File size: 16,018 Bytes
c268c45
 
 
 
bb7225b
c268c45
634ebde
c268c45
a54671e
 
 
 
 
 
 
 
c4d7d0b
 
f998e73
c4d7d0b
 
634ebde
c4d7d0b
 
6fd0d30
c4d7d0b
634ebde
c4d7d0b
c268c45
 
 
634ebde
a54671e
 
 
 
 
 
c268c45
 
a54671e
 
c268c45
 
a54671e
c268c45
a54671e
 
 
 
 
 
 
 
 
 
 
 
c268c45
a54671e
 
 
 
 
 
 
 
 
634ebde
a54671e
 
 
 
 
 
 
 
 
 
 
c268c45
a54671e
c4d7d0b
a54671e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d7d0b
a54671e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d7d0b
a54671e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634ebde
a54671e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c268c45
a54671e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import time
import json
import requests
import streamlit as st
import os

st.set_page_config(page_title="ViBidLQA - Trợ lý AI hỗ trợ hỏi đáp luật Việt Nam", page_icon="./app/static/ai.jpg", layout="centered", initial_sidebar_state="collapsed")

# ==== MÔI TRƯỜNG OAuth ====
FB_APP_ID = os.getenv("FB_APP_ID")
FB_APP_SECRET = os.getenv("FB_APP_SECRET")
FB_REDIRECT_URI = os.getenv("FB_REDIRECT_URI")
FB_CLIENT_URL = os.getenv("FB_CLIENT_URL", "https://www.facebook.com")
FB_API_URL = os.getenv("FB_API_URL", "https://graph.facebook.com")

# ==== MODULE URL ====
routing_response_module = st.secrets["ViBidLQA_Routing_Module"]
retrieval_module = st.secrets["ViBidLQA_Retrieval_Module"]
reranker_module = st.secrets["ViBidLQA_Rerank_Module"]
abs_QA_module = st.secrets["ViBidLQA_AQA_Module"]


url_api_question_classify_model = f"{routing_response_module}/query_classify"
url_api_unrelated_question_response_model = f"{routing_response_module}/response_unrelated_question"
url_api_introduce_system_model = f"{routing_response_module}/about_me"
url_api_retrieval_model = f"{retrieval_module}/search"
url_api_reranker_model = f"{reranker_module}/rerank"
url_api_generation_model = f"{abs_QA_module}/answer"

with open("./static/styles.css") as f:
    st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

# =============================
# TAB 1: VIBIDLQA CHATBOT
# =============================
with tab1:
    if 'messages' not in st.session_state:
        st.session_state.messages = [{'role': 'assistant', 'content': "Xin chào. Tôi là trợ lý AI văn bản luật Đấu thầu Việt Nam được phát triển bởi Nguyễn Trường Phúc và các cộng sự. Rất vui khi được hỗ trợ bạn trong các vấn đề pháp lý tại Việt Nam!"}]
    
    st.markdown(f"""
    <div class=logo_area>
        <img src="./app/static/ai.jpg"/>
    </div>
    """, unsafe_allow_html=True)
    st.markdown("<h2 style='text-align: center;'>ViBidLQA</h2>", unsafe_allow_html=True)
    
    def classify_question(question):
        data = {
            "question": question
        }
        
        response = requests.post(url_api_question_classify_model, json=data)
        
        if response.status_code == 200:
            print(response)
            return response
        else:
            return f"Lỗi: {response.status_code} - {response.text}"
    
    def introduce_system(question):
        data = {
            "question": question
        }
    
        response = requests.post(url_api_introduce_system_model, json=data, stream=True)
    
        if response.status_code == 200:
            return response
        else:
            return f"Lỗi: {response.status_code} - {response.text}"
        
    def response_unrelated_question(question):
        data = {
            "question": question
        }
    
        response = requests.post(url_api_unrelated_question_response_model, json=data, stream=True)
    
        if response.status_code == 200:
            return response
        else:
            return f"Lỗi: {response.status_code} - {response.text}"
    
    def retrieve_context(question, top_k=10):
        data = {
            "query": question,
            "top_k": top_k
        }
    
        response = requests.post(url_api_retrieval_model, json=data)
    
        if response.status_code == 200:
            results = response.json()["results"]
            return results
        else:
            return f"Lỗi tại Retrieval Module: {response.status_code} - {response.text}"
    
    def rerank_context(url_rerank_module, question, relevant_docs, top_k=5):
        data = {
            "question": question,
            "relevant_docs": relevant_docs,
            "top_k": top_k
        }
    
        response = requests.post(url_rerank_module, json=data)
    
        if response.status_code == 200:
            results = response.json()["reranked_docs"]
            return results
        else:
            return f"Lỗi tại Rerank module: {response.status_code} - {response.text}"
    
    def get_abstractive_answer(question):
        retrieved_context = retrieve_context(question=question)
        retrieved_context = [item['text'] for item in retrieved_context]
    
        reranked_context = rerank_context(url_rerank_module=url_api_reranker_model,
                                          question=question,
                                          relevant_docs=retrieved_context,
                                          top_k=5)[0]
        
        data = {
            "context": reranked_context,
            "question": question
        }
    
        response = requests.post(url_api_generation_model, json=data, stream=True)
    
        if response.status_code == 200:
            return response
        else:
            return f"Lỗi: {response.status_code} - {response.text}"
    
    def generate_text_effect(answer):
        words = answer.split()
        for i in range(len(words)):
            time.sleep(0.03)
            yield " ".join(words[:i+1])
    
    for message in st.session_state.messages:
        if message['role'] == 'assistant':
            avatar_class = "assistant-avatar"
            message_class = "assistant-message"
            avatar = './app/static/ai.jpg'
        else:
            avatar_class = ""
            message_class = "user-message"
            avatar = ''
        st.markdown(f"""
        <div class="{message_class}">
            <img src="{avatar}" class="{avatar_class}" />
            <div class="stMarkdown">{message['content']}</div>
        </div>
        """, unsafe_allow_html=True)
    
    if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'):
        st.markdown(f"""
        <div class="user-message">
                <div class="stMarkdown">{prompt}</div>
        </div>
        """, unsafe_allow_html=True)
        st.session_state.messages.append({'role': 'user', 'content': prompt})
        
        message_placeholder = st.empty()
        
        full_response = ""
        classify_result = classify_question(question=prompt).json()
    
        print(f"The type of user query: {classify_result}")
    
        if classify_result == "BIDDING_RELATED":
            abs_answer = get_abstractive_answer(question=prompt)
    
            if isinstance(abs_answer, str):
                full_response = abs_answer
                message_placeholder.markdown(f"""
                <div class="assistant-message">
                    <img src="./app/static/ai.jpg" class="assistant-avatar" />
                    <div class="stMarkdown">{full_response}</div>
                </div>
                """, unsafe_allow_html=True)
            else:
                full_response = ""
                for line in abs_answer.iter_lines():
                    if line:
                        line = line.decode('utf-8')
                        if line.startswith('data: '):
                            data_str = line[6:]
                            if data_str == '[DONE]':
                                break
                            
                            try:
                                data = json.loads(data_str)
                                token = data.get('token', '')
                                full_response += token
                                
                                message_placeholder.markdown(f"""
                                <div class="assistant-message">
                                    <img src="./app/static/ai.jpg" class="assistant-avatar" />
                                    <div class="stMarkdown">{full_response}●</div>
                                </div>
                                """, unsafe_allow_html=True)
                                
                            except json.JSONDecodeError:
                                pass
    
        elif classify_result == "ABOUT_CHATBOT":
            answer = introduce_system(question=prompt)
    
            if isinstance(answer, str):
                full_response = answer
                message_placeholder.markdown(f"""
                <div class="assistant-message">
                    <img src="./app/static/ai.jpg" class="assistant-avatar" />
                    <div class="stMarkdown">{full_response}</div>
                </div>
                """, unsafe_allow_html=True)
            else:
                full_response = ""
                for line in answer.iter_lines():
                    if line:
                        line = line.decode('utf-8')
                        if line.startswith('data: '):
                            data_str = line[6:]
                            if data_str == '[DONE]':
                                break
                            
                            try:
                                data = json.loads(data_str)
                                token = data.get('token', '')
                                full_response += token
                                
                                message_placeholder.markdown(f"""
                                <div class="assistant-message">
                                    <img src="./app/static/ai.jpg" class="assistant-avatar" />
                                    <div class="stMarkdown">{full_response}●</div>
                                </div>
                                """, unsafe_allow_html=True)
                                
                            except json.JSONDecodeError:
                                pass
        
        else:
            answer = response_unrelated_question(question=prompt)
    
            if isinstance(answer, str):
                full_response = answer
                message_placeholder.markdown(f"""
                <div class="assistant-message">
                    <img src="./app/static/ai.jpg" class="assistant-avatar" />
                    <div class="stMarkdown">{full_response}</div>
                </div>
                """, unsafe_allow_html=True)
            else:
                full_response = ""
                for line in answer.iter_lines():
                    if line:
                        line = line.decode('utf-8')
                        if line.startswith('data: '):
                            data_str = line[6:]
                            if data_str == '[DONE]':
                                break
                            
                            try:
                                data = json.loads(data_str)
                                token = data.get('token', '')
                                full_response += token
                                
                                message_placeholder.markdown(f"""
                                <div class="assistant-message">
                                    <img src="./app/static/ai.jpg" class="assistant-avatar" />
                                    <div class="stMarkdown">{full_response}●</div>
                                </div>
                                """, unsafe_allow_html=True)
                                
                            except json.JSONDecodeError:
                                pass
    
        message_placeholder.markdown(f"""
        <div class="assistant-message">
            <img src="./app/static/ai.jpg" class="assistant-avatar" />
                <div class="stMarkdown">
                    {full_response}
                </div>
        </div>
        """, unsafe_allow_html=True)
        
        st.session_state.messages.append({'role': 'assistant', 'content': full_response})

# =============================
# TAB 2: FACEBOOK OAUTH
# =============================
with tab2:
    st.title("Facebook OAuth Integration")

    # Định nghĩa hàm đăng ký webhook Facebook
    def register_facebook_webhook(page_id: str, page_access_token: str):
        try:
            url = f"https://graph.facebook.com/v19.0/{page_id}/subscribed_apps"
            params = {
                "subscribed_fields": "messages,messaging_postbacks",
                "access_token": page_access_token
            }
    
            response = requests.post(url, params=params)
            response.raise_for_status()
            data = response.json()
    
            if data.get("success"):
                return True, "Đăng ký webhook thành công."
            else:
                return False, f"Facebook trả về lỗi: {data}"
        except requests.exceptions.RequestException as e:
            return False, f"Lỗi khi gọi Facebook API: {e}"

    if "token" not in st.session_state:
        params = {
            "client_id": FB_APP_ID,
            "redirect_uri": FB_REDIRECT_URI,
            "scope": "pages_show_list,pages_manage_metadata,pages_messaging",
        }
        auth_url = f"{FB_CLIENT_URL}/dialog/oauth?{urlencode(params)}"
        st.markdown("### Step 1: Đăng nhập Facebook")
        st.markdown(f"[Bấm vào đây để đăng nhập Facebook]({auth_url})")

    st.markdown("### Step 2: Dán URL sau khi đăng nhập")
    redirect_input = st.text_input("Redirect URL (sau khi đăng nhập thành công)")

    if redirect_input:
        parsed_url = urlparse(redirect_input)
        code = parse_qs(parsed_url.query).get("code", [None])[0]

        if code:
            try:
                token_response = requests.get(f"{FB_API_URL}/oauth/access_token", params={
                    "client_id": FB_APP_ID,
                    "redirect_uri": FB_REDIRECT_URI,
                    "client_secret": FB_APP_SECRET,
                    "code": code,
                })

                token = token_response.json()["access_token"]
                st.session_state.token = token
                st.success("Lấy access token thành công!")

                pages_response = requests.get(f"{FB_API_URL}/me/accounts", params={"access_token": token})
                pages = pages_response.json().get("data", [])
                st.session_state.pages = pages

                st.markdown("### Danh sách các Page bạn quản lý:")
                for page in pages:
                    st.json(page)

            except Exception as e:
                st.error(f"Lỗi: {e}")

    if "pages" in st.session_state and st.session_state.pages:
        st.markdown("### Step 3: Đăng ký Webhook cho các page")
        selected_pages = st.multiselect(
            "Chọn các page để đăng ký webhook:",
            options=[f"{p['name']} ({p['id']})" for p in st.session_state.pages]
        )

        if st.button("Đăng ký Webhook"):
            selected_pages = st.session_state.selected_pages  # Giả sử bạn có danh sách page đã chọn
            for page in st.session_state.pages:
                label = f"{page['name']} ({page['id']})"
                if label in selected_pages:
                    page_id = page['id']
                    page_access_token = page['access_token']
                    
                    # Gọi hàm đăng ký webhook
                    success, message = register_facebook_webhook(page_id, page_access_token)
        
                    if success:
                        st.success(f"✅ Đã đăng ký Webhook cho page: {page['name']}")
                    else:
                        st.warning(f"⚠️ Không thể đăng ký Webhook cho page: {page['name']} - {message}")

    if st.button("Hiển thị Thông tin Trang"):
        for page in st.session_state.pages:
            page_id = page['id']
            page_name = page['name']
            page_access_token = page['access_token']
            
            # Hiển thị thông tin của từng page
            st.write(f"**Page Name**: {page_name}")
            st.write(f"**Page ID**: {page_id}")
            st.write(f"**Page Access Token**: {page_access_token}")
            st.write("---")  # Dấu phân cách giữa các trang