File size: 10,252 Bytes
c268c45
 
 
 
 
634ebde
c268c45
c4d7d0b
 
 
 
 
634ebde
c4d7d0b
 
634ebde
c4d7d0b
634ebde
c4d7d0b
c268c45
 
 
c4d7d0b
c268c45
c4d7d0b
c268c45
 
 
 
 
 
c4d7d0b
c268c45
c4d7d0b
c268c45
c4d7d0b
c268c45
c4d7d0b
 
 
 
 
 
 
 
c268c45
c4d7d0b
 
 
 
 
 
c268c45
 
c4d7d0b
c268c45
 
 
c4d7d0b
c268c45
 
 
 
c4d7d0b
 
c268c45
c4d7d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
634ebde
c268c45
634ebde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c268c45
c4d7d0b
634ebde
 
 
 
 
 
 
c268c45
 
634ebde
c268c45
 
 
 
c4d7d0b
c268c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634ebde
c268c45
634ebde
c268c45
 
 
 
 
 
 
 
 
 
634ebde
c268c45
 
 
 
 
 
 
634ebde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d7d0b
634ebde
 
 
 
 
 
c4d7d0b
634ebde
 
 
 
 
 
 
 
 
 
 
 
 
 
c268c45
634ebde
 
 
 
 
 
 
 
 
 
 
 
 
c268c45
634ebde
 
 
 
 
 
 
 
 
c4d7d0b
c268c45
634ebde
 
 
 
 
 
 
 
 
 
c4d7d0b
634ebde
 
 
 
 
 
 
 
 
 
 
 
 
c4d7d0b
634ebde
 
 
 
 
 
 
 
 
c268c45
 
 
 
 
 
 
 
 
 
f912d04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import time
import json
import requests
import streamlit as st

st.set_page_config(page_title="ViBidLQA - Trợ lý AI hỗ trợ hỏi đáp luật Việt Nam", page_icon="./app/static/ai.jpg", layout="centered", initial_sidebar_state="collapsed")

routing_response_module = st.secrets["ViBidLQA_Routing_Module"]
retrieval_module = st.secrets["ViBidLQA_Retrieval_Module"]
ext_QA_module = st.secrets["ViBidLQA_EQA_Module"]
abs_QA_module = st.secrets["ViBidLQA_AQA_Module"]


url_api_question_classify_model = f"{routing_response_module}/query_classify"
url_api_unrelated_question_response_model = f"{routing_response_module}/response_unrelated_question"
url_api_introduce_system_modelff = f"{routing_response_module}/about_me"
url_api_retrieval_model = f"{retrieval_module}/search"
url_api_reranker_model = f"{reranker_module}/rerank"
url_api_generation_model = f"{abs_QA_module}/answer"

with open("./static/styles.css") as f:
    st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
    
if 'messages' not in st.session_state:
    st.session_state.messages = [{'role': 'assistant', 'content': "Xin chào. Tôi là trợ lý AI văn bản luật Đấu thầu Việt Nam được phát triển bởi Nguyễn Trường Phúc và các cộng sự. Rất vui khi được hỗ trợ bạn trong các vấn đề pháp lý tại Việt Nam!"}]

st.markdown(f"""
<div class=logo_area>
    <img src="./app/static/ai.jpg"/>
</div>
""", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>ViBidLQA</h2>", unsafe_allow_html=True)

def classify_question(question):
    data = {
        "question": question
    }
    
    response = requests.post(url_api_question_classify_model, json=data)
    
    if response.status_code == 200:
        print(response)
        return response
    else:
        return f"Lỗi: {response.status_code} - {response.text}"

def introduce_system(question):
    data = {
        "question": question
    }

    response = requests.post(url_api_introduce_system_model, json=data, stream=True)

    if response.status_code == 200:
        return response
    else:
        return f"Lỗi: {response.status_code} - {response.text}"
    
def response_unrelated_question(question):
    data = {
        "question": question
    }

    response = requests.post(url_api_unrelated_question_response_model, json=data, stream=True)

    if response.status_code == 200:
        return response
    else:
        return f"Lỗi: {response.status_code} - {response.text}"

def retrieve_context(question, top_k=10):
    data = {
        "query": question,
        "top_k": top_k
    }

    response = requests.post(url_api_retrieval_model, json=data)

    if response.status_code == 200:
        results = response.json()["results"]
        return results
    else:
        return f"Lỗi tại Retrieval Module: {response.status_code} - {response.text}"

def rerank_context(url_rerank_module, question, relevant_docs, top_k=5):
    data = {
        "question": question,
        "relevant_docs": relevant_docs,
        "top_k": top_k
    }

    response = requests.post(url_rerank_module, json=data)

    if response.status_code == 200:
        results = response.json()["reranked_docs"]
        return results
    else:
        return f"Lỗi tại Rerank module: {response.status_code} - {response.text}"

def get_abstractive_answer(question):
    retrieved_context = retrieve_context(question=question)
    retrieved_context = [item['text'] for item in retrieved_context]

    reranked_context = rerank_context(url_rerank_module=url_api_reranker_model,
                                      question=question,
                                      relevant_docs=retrieved_context,
                                      top_k=5)[0]
    
    data = {
        "context": reranked_context,
        "question": question
    }

    response = requests.post(url_api_generation_model, json=data, stream=True)

    if response.status_code == 200:
        return response
    else:
        return f"Lỗi: {response.status_code} - {response.text}"

def generate_text_effect(answer):
    words = answer.split()
    for i in range(len(words)):
        time.sleep(0.03)
        yield " ".join(words[:i+1])

for message in st.session_state.messages:
    if message['role'] == 'assistant':
        avatar_class = "assistant-avatar"
        message_class = "assistant-message"
        avatar = './app/static/ai.jpg'
    else:
        avatar_class = ""
        message_class = "user-message"
        avatar = ''
    st.markdown(f"""
    <div class="{message_class}">
        <img src="{avatar}" class="{avatar_class}" />
        <div class="stMarkdown">{message['content']}</div>
    </div>
    """, unsafe_allow_html=True)

if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'):
    st.markdown(f"""
    <div class="user-message">
            <div class="stMarkdown">{prompt}</div>
    </div>
    """, unsafe_allow_html=True)
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    
    message_placeholder = st.empty()
    
    full_response = ""
    classify_result = classify_question(question=prompt).json()

    print(f"The type of user query: {classify_result}")

    if classify_result == "BIDDING_RELATED":
        abs_answer = get_abstractive_answer(question=prompt)

        if isinstance(abs_answer, str):
            full_response = abs_answer
            message_placeholder.markdown(f"""
            <div class="assistant-message">
                <img src="./app/static/ai.jpg" class="assistant-avatar" />
                <div class="stMarkdown">{full_response}</div>
            </div>
            """, unsafe_allow_html=True)
        else:
            full_response = ""
            for line in abs_answer.iter_lines():
                if line:
                    line = line.decode('utf-8')
                    if line.startswith('data: '):
                        data_str = line[6:]
                        if data_str == '[DONE]':
                            break
                        
                        try:
                            data = json.loads(data_str)
                            token = data.get('token', '')
                            full_response += token
                            
                            message_placeholder.markdown(f"""
                            <div class="assistant-message">
                                <img src="./app/static/ai.jpg" class="assistant-avatar" />
                                <div class="stMarkdown">{full_response}●</div>
                            </div>
                            """, unsafe_allow_html=True)
                            
                        except json.JSONDecodeError:
                            pass

    elif classify_result == "ABOUT_CHATBOT":
        answer = introduce_system(question=prompt)

        if isinstance(answer, str):
            full_response = answer
            message_placeholder.markdown(f"""
            <div class="assistant-message">
                <img src="./app/static/ai.jpg" class="assistant-avatar" />
                <div class="stMarkdown">{full_response}</div>
            </div>
            """, unsafe_allow_html=True)
        else:
            full_response = ""
            for line in answer.iter_lines():
                if line:
                    line = line.decode('utf-8')
                    if line.startswith('data: '):
                        data_str = line[6:]
                        if data_str == '[DONE]':
                            break
                        
                        try:
                            data = json.loads(data_str)
                            token = data.get('token', '')
                            full_response += token
                            
                            message_placeholder.markdown(f"""
                            <div class="assistant-message">
                                <img src="./app/static/ai.jpg" class="assistant-avatar" />
                                <div class="stMarkdown">{full_response}●</div>
                            </div>
                            """, unsafe_allow_html=True)
                            
                        except json.JSONDecodeError:
                            pass
    
    else:
        answer = response_unrelated_question(question=prompt)

        if isinstance(answer, str):
            full_response = answer
            message_placeholder.markdown(f"""
            <div class="assistant-message">
                <img src="./app/static/ai.jpg" class="assistant-avatar" />
                <div class="stMarkdown">{full_response}</div>
            </div>
            """, unsafe_allow_html=True)
        else:
            full_response = ""
            for line in answer.iter_lines():
                if line:
                    line = line.decode('utf-8')
                    if line.startswith('data: '):
                        data_str = line[6:]
                        if data_str == '[DONE]':
                            break
                        
                        try:
                            data = json.loads(data_str)
                            token = data.get('token', '')
                            full_response += token
                            
                            message_placeholder.markdown(f"""
                            <div class="assistant-message">
                                <img src="./app/static/ai.jpg" class="assistant-avatar" />
                                <div class="stMarkdown">{full_response}●</div>
                            </div>
                            """, unsafe_allow_html=True)
                            
                        except json.JSONDecodeError:
                            pass

    message_placeholder.markdown(f"""
    <div class="assistant-message">
        <img src="./app/static/ai.jpg" class="assistant-avatar" />
            <div class="stMarkdown">
                {full_response}
            </div>
    </div>
    """, unsafe_allow_html=True)
    
    st.session_state.messages.append({'role': 'assistant', 'content': full_response})