Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,13 @@ import gradio as gr
|
|
5 |
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
|
6 |
import os
|
7 |
|
8 |
-
# Load
|
9 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
10 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
11 |
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
-
|
|
|
14 |
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
|
15 |
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)
|
16 |
|
@@ -20,10 +21,10 @@ def translate_text(tamil_text):
|
|
20 |
translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
21 |
return translation
|
22 |
|
23 |
-
def
|
24 |
prompt = f"Continue the story based on the following text: {translated_text}"
|
25 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
26 |
-
outputs = gpt_model.generate(inputs['input_ids'], max_length=50, num_return_sequences=1) # Reduced max_length
|
27 |
creative_text = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
return creative_text
|
29 |
|
@@ -46,8 +47,8 @@ def process_input(tamil_input):
|
|
46 |
# Translate the input text
|
47 |
translated_output = translate_text(tamil_input)
|
48 |
|
49 |
-
# Generate creative text using GPT-
|
50 |
-
creative_output =
|
51 |
|
52 |
# Generate an image using Hugging Face's FLUX model
|
53 |
image_bytes = query_image({"inputs": translated_output})
|
|
|
5 |
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
|
6 |
import os
|
7 |
|
8 |
+
# Load the translation model
|
9 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
10 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
11 |
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
+
# Load GPT-2 model and tokenizer (smaller and faster than GPT-Neo)
|
14 |
+
gpt_model_name = "gpt2"
|
15 |
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
|
16 |
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)
|
17 |
|
|
|
21 |
translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
22 |
return translation
|
23 |
|
24 |
+
def query_gpt_2(translated_text):
|
25 |
prompt = f"Continue the story based on the following text: {translated_text}"
|
26 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
27 |
+
outputs = gpt_model.generate(inputs['input_ids'], max_length=50, num_return_sequences=1) # Reduced max_length for speed
|
28 |
creative_text = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
return creative_text
|
30 |
|
|
|
47 |
# Translate the input text
|
48 |
translated_output = translate_text(tamil_input)
|
49 |
|
50 |
+
# Generate creative text using GPT-2
|
51 |
+
creative_output = query_gpt_2(translated_output)
|
52 |
|
53 |
# Generate an image using Hugging Face's FLUX model
|
54 |
image_bytes = query_image({"inputs": translated_output})
|