pravin0077 commited on
Commit
3f10588
·
verified ·
1 Parent(s): 2816496

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -5,13 +5,12 @@ import gradio as gr
5
  from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
6
  import os
7
 
8
- # Load the translation model
9
  model_name = "Helsinki-NLP/opus-mt-mul-en"
10
  translation_model = MarianMTModel.from_pretrained(model_name)
11
  translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
12
 
13
- # Load GPT-Neo model and tokenizer
14
- gpt_model_name = "EleutherAI/gpt-neo-1.3B" # You can also use gpt-neo-2.7B if needed
15
  gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
16
  gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)
17
 
@@ -24,7 +23,7 @@ def translate_text(tamil_text):
24
  def query_gpt_neo(translated_text):
25
  prompt = f"Continue the story based on the following text: {translated_text}"
26
  inputs = gpt_tokenizer(prompt, return_tensors="pt")
27
- outputs = gpt_model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1)
28
  creative_text = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
29
  return creative_text
30
 
 
5
  from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
6
  import os
7
 
8
+ # Load models and tokenizers globally to avoid reloading them for every request
9
  model_name = "Helsinki-NLP/opus-mt-mul-en"
10
  translation_model = MarianMTModel.from_pretrained(model_name)
11
  translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
12
 
13
+ gpt_model_name = "EleutherAI/gpt-neo-1.3B"
 
14
  gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
15
  gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)
16
 
 
23
  def query_gpt_neo(translated_text):
24
  prompt = f"Continue the story based on the following text: {translated_text}"
25
  inputs = gpt_tokenizer(prompt, return_tensors="pt")
26
+ outputs = gpt_model.generate(inputs['input_ids'], max_length=50, num_return_sequences=1) # Reduced max_length
27
  creative_text = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
28
  return creative_text
29