Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,12 @@ import gradio as gr
|
|
5 |
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
|
6 |
import os
|
7 |
|
8 |
-
# Load
|
9 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
10 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
11 |
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
-
|
14 |
-
gpt_model_name = "EleutherAI/gpt-neo-1.3B" # You can also use gpt-neo-2.7B if needed
|
15 |
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
|
16 |
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)
|
17 |
|
@@ -24,7 +23,7 @@ def translate_text(tamil_text):
|
|
24 |
def query_gpt_neo(translated_text):
|
25 |
prompt = f"Continue the story based on the following text: {translated_text}"
|
26 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
27 |
-
outputs = gpt_model.generate(inputs['input_ids'], max_length=
|
28 |
creative_text = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
return creative_text
|
30 |
|
|
|
5 |
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
|
6 |
import os
|
7 |
|
8 |
+
# Load models and tokenizers globally to avoid reloading them for every request
|
9 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
10 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
11 |
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
+
gpt_model_name = "EleutherAI/gpt-neo-1.3B"
|
|
|
14 |
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
|
15 |
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)
|
16 |
|
|
|
23 |
def query_gpt_neo(translated_text):
|
24 |
prompt = f"Continue the story based on the following text: {translated_text}"
|
25 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
26 |
+
outputs = gpt_model.generate(inputs['input_ids'], max_length=50, num_return_sequences=1) # Reduced max_length
|
27 |
creative_text = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
return creative_text
|
29 |
|