Spaces:
Sleeping
Sleeping
import requests | |
import io | |
from PIL import Image | |
import gradio as gr | |
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer | |
import os | |
# Load the translation model | |
model_name = "Helsinki-NLP/opus-mt-mul-en" | |
translation_model = MarianMTModel.from_pretrained(model_name) | |
translation_tokenizer = MarianTokenizer.from_pretrained(model_name) | |
# Load GPT-Neo model and tokenizer | |
gpt_model_name = "EleutherAI/gpt-neo-1.3B" # You can also use gpt-neo-2.7B if needed | |
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name) | |
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name) | |
def translate_text(tamil_text): | |
inputs = translation_tokenizer(tamil_text, return_tensors="pt") | |
translated_tokens = translation_model.generate(**inputs) | |
translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True) | |
return translation | |
def query_gpt_neo(translated_text, max_words): | |
prompt = f"Continue the story based on the following text: {translated_text}" | |
inputs = gpt_tokenizer(prompt, return_tensors="pt") | |
outputs = gpt_model.generate(inputs['input_ids'], max_length=max_words, num_return_sequences=1) | |
creative_text = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return creative_text | |
def query_image(payload): | |
huggingface_api_key = os.getenv('HUGGINGFACE_API_KEY') | |
if not huggingface_api_key: | |
return "Error: Hugging Face API key not set." | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
headers = {"Authorization": f"Bearer {huggingface_api_key}"} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 200: | |
return response.content | |
else: | |
return f"Error: {response.status_code} - {response.text}" | |
def process_input(tamil_input, max_words): | |
try: | |
# Translate the input text | |
translated_output = translate_text(tamil_input) | |
# Generate creative text using GPT-Neo | |
creative_output = query_gpt_neo(translated_output, max_words) | |
# Generate an image using Hugging Face's FLUX model | |
image_bytes = query_image({"inputs": translated_output}) | |
image = Image.open(io.BytesIO(image_bytes)) | |
return translated_output, creative_output, image | |
except Exception as e: | |
return f"Error occurred: {str(e)}", "", None | |
# Create a Gradio interface with interactive elements | |
interface = gr.Interface( | |
fn=process_input, | |
inputs=[ | |
gr.Textbox(label="Input Tamil Text", placeholder="Enter your Tamil text here..."), | |
gr.Slider(label="Max Words for Creative Text", minimum=50, maximum=200, step=10, value=100) | |
], | |
outputs=[ | |
gr.Textbox(label="Translated Text"), | |
gr.Textbox(label="Creative Text"), | |
gr.Image(label="Generated Image") | |
], | |
title="TRANSART - Multimodal AI App", | |
description="Enter Tamil text to translate to English, generate creative text, and produce an image based on the translated text.", | |
theme="compact", # Use the 'compact' theme for a cleaner app look | |
layout="vertical" # Arrange components vertically for better readability | |
) | |
interface.launch() | |