File size: 3,254 Bytes
93cb70c
 
 
 
3a6b0f7
93cb70c
 
3a6b0f7
93cb70c
3a6b0f7
 
 
 
 
 
 
93cb70c
 
3a6b0f7
 
 
93cb70c
 
3a6b0f7
 
 
 
 
 
93cb70c
 
 
3a6b0f7
 
 
93cb70c
 
 
3a6b0f7
 
 
 
 
93cb70c
3a6b0f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93cb70c
3a6b0f7
1786f21
93cb70c
3a6b0f7
 
 
 
93cb70c
 
 
 
 
3a6b0f7
 
 
 
93cb70c
3a6b0f7
1786f21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import requests
import io
from PIL import Image
import gradio as gr
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
import os

# Load the translation model
model_name = "Helsinki-NLP/opus-mt-mul-en"
translation_model = MarianMTModel.from_pretrained(model_name)
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)

# Load GPT-Neo model and tokenizer
gpt_model_name = "EleutherAI/gpt-neo-1.3B"  # You can also use gpt-neo-2.7B if needed
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)

def translate_text(tamil_text):
    inputs = translation_tokenizer(tamil_text, return_tensors="pt")
    translated_tokens = translation_model.generate(**inputs)
    translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
    return translation

def query_gpt_neo(translated_text, max_words):
    prompt = f"Continue the story based on the following text: {translated_text}"
    inputs = gpt_tokenizer(prompt, return_tensors="pt")
    outputs = gpt_model.generate(inputs['input_ids'], max_length=max_words, num_return_sequences=1)
    creative_text = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return creative_text

def query_image(payload):
    huggingface_api_key = os.getenv('HUGGINGFACE_API_KEY')
    if not huggingface_api_key:
        return "Error: Hugging Face API key not set."

    API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
    headers = {"Authorization": f"Bearer {huggingface_api_key}"}
    response = requests.post(API_URL, headers=headers, json=payload)
    
    if response.status_code == 200:
        return response.content
    else:
        return f"Error: {response.status_code} - {response.text}"

def process_input(tamil_input, max_words):
    try:
        # Translate the input text
        translated_output = translate_text(tamil_input)
        
        # Generate creative text using GPT-Neo
        creative_output = query_gpt_neo(translated_output, max_words)
        
        # Generate an image using Hugging Face's FLUX model
        image_bytes = query_image({"inputs": translated_output})
        image = Image.open(io.BytesIO(image_bytes))
        
        return translated_output, creative_output, image
    except Exception as e:
        return f"Error occurred: {str(e)}", "", None

# Create a Gradio interface with interactive elements
interface = gr.Interface(
    fn=process_input,
    inputs=[
        gr.Textbox(label="Input Tamil Text", placeholder="Enter your Tamil text here..."),
        gr.Slider(label="Max Words for Creative Text", minimum=50, maximum=200, step=10, value=100)
    ],
    outputs=[
        gr.Textbox(label="Translated Text"),
        gr.Textbox(label="Creative Text"),
        gr.Image(label="Generated Image")
    ],
    title="TRANSART - Multimodal AI App",
    description="Enter Tamil text to translate to English, generate creative text, and produce an image based on the translated text.",
    theme="compact",  # Use the 'compact' theme for a cleaner app look
    layout="vertical"  # Arrange components vertically for better readability
)

interface.launch()