audio-to-text / app.py
pratikshahp's picture
Update app.py
bcc0290 verified
raw
history blame
1.86 kB
import torch
import torchaudio
from torchaudio.transforms import Resample
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
import streamlit as st
from streamlit_audio_recorder import st_audio_recorder
def preprocess_audio(audio_bytes, sample_rate=16000):
# Load audio and convert to mono if necessary
waveform, _ = torchaudio.load(audio_bytes, normalize=True)
if waveform.size(0) > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
# Resample if needed
if waveform.shape[1] != sample_rate:
resampler = Resample(orig_freq=waveform.shape[1], new_freq=sample_rate)
waveform = resampler(waveform)
return waveform
def transcribe_audio(audio_bytes):
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-fr-st")
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-mustc-en-fr-st")
# Preprocess audio
input_features = preprocess_audio(audio_bytes)
# Tokenize audio
inputs = processor(input_features.squeeze(0), return_tensors="pt", padding=True)
# Generate transcription
generated_ids = model.generate(inputs.input_features)
translation = processor.batch_decode(generated_ids, skip_special_tokens=True)
return translation
st.title("Audio to Text Transcription with Recording")
# Use the st_audio_recorder widget to record audio
audio_bytes = st_audio_recorder(sample_rate=16000, codec="wav", show_playback_controls=True)
# Display the recorded audio
if audio_bytes:
st.audio(audio_bytes, format="audio/wav")
transcription = transcribe_audio(audio_bytes)
if transcription:
st.write("Transcription:")
st.write(transcription[0])
else:
st.write("Error: Failed to transcribe audio.")
else:
st.write("Please record an audio.")