Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import torchaudio
|
|
3 |
from torchaudio.transforms import Resample
|
4 |
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
|
5 |
import streamlit as st
|
|
|
6 |
|
7 |
def preprocess_audio(audio_bytes, sample_rate=16000):
|
8 |
# Load audio and convert to mono if necessary
|
@@ -33,14 +34,15 @@ def transcribe_audio(audio_bytes):
|
|
33 |
|
34 |
return translation
|
35 |
|
36 |
-
st.title("Audio to Text Transcription")
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
-
audio_bytes = uploaded_file.getvalue()
|
44 |
transcription = transcribe_audio(audio_bytes)
|
45 |
|
46 |
if transcription:
|
@@ -49,5 +51,6 @@ if uploaded_file is not None:
|
|
49 |
else:
|
50 |
st.write("Error: Failed to transcribe audio.")
|
51 |
else:
|
52 |
-
st.write("Please
|
|
|
53 |
|
|
|
3 |
from torchaudio.transforms import Resample
|
4 |
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
|
5 |
import streamlit as st
|
6 |
+
from streamlit_audio_recorder import st_audio_recorder
|
7 |
|
8 |
def preprocess_audio(audio_bytes, sample_rate=16000):
|
9 |
# Load audio and convert to mono if necessary
|
|
|
34 |
|
35 |
return translation
|
36 |
|
37 |
+
st.title("Audio to Text Transcription with Recording")
|
38 |
|
39 |
+
# Use the st_audio_recorder widget to record audio
|
40 |
+
audio_bytes = st_audio_recorder(sample_rate=16000, codec="wav", show_playback_controls=True)
|
41 |
|
42 |
+
# Display the recorded audio
|
43 |
+
if audio_bytes:
|
44 |
+
st.audio(audio_bytes, format="audio/wav")
|
45 |
|
|
|
46 |
transcription = transcribe_audio(audio_bytes)
|
47 |
|
48 |
if transcription:
|
|
|
51 |
else:
|
52 |
st.write("Error: Failed to transcribe audio.")
|
53 |
else:
|
54 |
+
st.write("Please record an audio.")
|
55 |
+
|
56 |
|