File size: 1,614 Bytes
dcf6735
f013d22
 
dcf6735
 
a976d7a
16d11ec
f013d22
 
 
 
 
 
 
 
 
 
 
 
 
dcf6735
 
 
 
f013d22
 
16d11ec
 
 
dcf6735
 
8ef7225
dcf6735
 
f013d22
dcf6735
 
 
 
 
 
 
 
 
 
16d11ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torchaudio
from torchaudio.transforms import Resample
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
from audio_recorder_streamlit import audio_recorder
import streamlit as st

def preprocess_audio(audio_bytes, sample_rate=16000):
    # Load audio and convert to mono if necessary
    waveform, _ = torchaudio.load(audio_bytes, normalize=True)
    if waveform.size(0) > 1:
        waveform = torch.mean(waveform, dim=0, keepdim=True)
    
    # Resample if needed
    if waveform.shape[1] != sample_rate:
        resampler = Resample(orig_freq=waveform.shape[1], new_freq=sample_rate)
        waveform = resampler(waveform)
    
    return waveform

def transcribe_audio(audio_bytes):
    model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-fr-st")
    processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-mustc-en-fr-st")

    # Preprocess audio
    input_features = preprocess_audio(audio_bytes)

    # Generate transcription
    generated_ids = model.generate(input_features)
    translation = processor.batch_decode(generated_ids, skip_special_tokens=True)

    return translation

st.title("Audio to Text Transcription..")
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16000)
if audio_bytes:
    st.audio(audio_bytes, format="audio/wav")

    transcription = transcribe_audio(audio_bytes)
    if transcription:
        st.write("Transcription:")
        st.write(transcription)
    else:
        st.write("Error: Failed to transcribe audio.")
else:
    st.write("No audio recorded.")