Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
|
3 |
+
from audio_recorder_streamlit import audio_recorder
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def transcribe_audio(audio_bytes):
|
7 |
+
|
8 |
+
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-fr-st")
|
9 |
+
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-mustc-en-fr-st")
|
10 |
+
|
11 |
+
generated_ids = model.generate(input_ids=audio_bytes["input_features"], attention_mask=audio_bytes["attention_mask"])
|
12 |
+
translation = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
13 |
+
|
14 |
+
return translation
|
15 |
+
|
16 |
+
|
17 |
+
st.title("Audio to Text Transcription..")
|
18 |
+
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)
|
19 |
+
if audio_bytes:
|
20 |
+
st.audio(audio_bytes, format="audio/wav")
|
21 |
+
|
22 |
+
transcription = transcribe_audio(audio_bytes)
|
23 |
+
if transcription:
|
24 |
+
st.write("Transcription:")
|
25 |
+
st.write(transcription)
|
26 |
+
else:
|
27 |
+
st.write("Error: Failed to transcribe audio.")
|
28 |
+
else:
|
29 |
+
st.write("No audio recorded.")
|