Spaces:
Runtime error
Runtime error
# Transform an audio to text script with language detection. | |
# Author: Pratiksha Patel | |
# Description: This script record the audio, transform it to text, detect the language of the file and save it to a txt file. | |
# import required modules | |
import os | |
import streamlit as st | |
from audio_recorder_streamlit import audio_recorder | |
from langdetect import detect | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large") | |
# Load model directly | |
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq | |
def transcribe_audio(audio_bytes): | |
processor = AutoProcessor.from_pretrained("openai/whisper-large") | |
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large") | |
audio_array = np.frombuffer(audio_bytes, dtype=np.int16) | |
# Cast audio array to double precision and normalize | |
audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0 | |
input_values = processor(audio_tensor, return_tensors="pt", sampling_rate=16000).input_values | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.decode(predicted_ids[0]) | |
return transcription | |
# Function to open a file | |
def startfile(fn): | |
os.system('open %s' % fn) | |
# Function to create and open a txt file | |
def create_and_open_txt(text, filename): | |
# Create and write the text to a txt file | |
with open(filename, "w") as file: | |
file.write(text) | |
startfile(filename) | |
# Streamlit app | |
st.title("Audio to Text Transcription..") | |
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000) | |
if audio_bytes: | |
st.audio(audio_bytes, format="audio/wav") | |
transcription = transcribe_audio(audio_bytes) | |
if transcription: | |
st.write("Transcription:") | |
st.write(transcription) | |
else: | |
st.write("Error: Failed to transcribe audio.") | |
else: | |
st.write("No audio recorded.") | |
# Detect the language | |
language = detect(transcribed_text) | |
st.write(f"Detected language: {language}") | |
# Create and open a txt file with the text | |
create_and_open_txt(transcribed_text, f"output_{language}.txt") | |