File size: 2,217 Bytes
3c4ad65
 
 
 
 
 
 
 
19f09f4
71a635a
1d97cff
6134bda
 
1d97cff
 
3c4ad65
1d97cff
 
 
 
 
 
 
 
 
 
 
 
3c4ad65
d2cfc63
 
3c4ad65
 
d2cfc63
3c4ad65
d2cfc63
 
 
3c4ad65
1d97cff
3c4ad65
1d97cff
19f09f4
3c4ad65
1d97cff
 
 
 
3c4ad65
1d97cff
 
 
 
 
 
 
3c4ad65
d2cfc63
 
3c4ad65
 
d2cfc63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Transform an audio to text script with language detection.
# Author: Pratiksha Patel

# Description: This script record the audio, transform it to text, detect the language of the file and save it to a txt file.
# import required modules
import os
import streamlit as st
from audio_recorder_streamlit import audio_recorder
from langdetect import detect
import numpy as np
# Use a pipeline as a high-level helper
#from transformers import pipeline
#pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
# Load model directly
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq

def transcribe_audio(audio_bytes):
    processor = AutoProcessor.from_pretrained("openai/whisper-large")
    model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
    audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
    # Cast audio array to double precision and normalize
    audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
    input_values = processor(audio_tensor, return_tensors="pt", sampling_rate=16000).input_values
    logits = model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.decode(predicted_ids[0])
    return transcription
    
# Function to open a file
#def startfile(fn):
 #   os.system('open %s' % fn)
    
# Function to create and open a txt file
#def create_and_open_txt(text, filename):
    # Create and write the text to a txt file
 #   with open(filename, "w") as file:
  #      file.write(text)
   # startfile(filename)

# Streamlit app
st.title("Audio to Text Transcription..")

audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)

if audio_bytes:
    st.audio(audio_bytes, format="audio/wav")
    
    transcription = transcribe_audio(audio_bytes)

    if transcription:
        st.write("Transcription:")
        st.write(transcription)
    else:
        st.write("Error: Failed to transcribe audio.")
else:
    st.write("No audio recorded.")
# Detect the language
#language = detect(transcription)
#st.write(f"Detected language: {language}")

# Create and open a txt file with the text
#create_and_open_txt(transcription, f"output_{language}.txt")