prateekbh's picture
Update app.py
6bf6d32 verified
raw
history blame
3.35 kB
from threading import Thread
import gradio as gr
import torch
from transformers import AutoModel, AutoProcessor
from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList
device = "cuda:0" if torch.cuda.is_available() else "cpu"
title = """<h1 style="text-align: center;">Product description generator</h1>"""
css = """
div#col-container {
margin: 0 auto;
max-width: 840px;
}
"""
model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [151645]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
@torch.no_grad()
def response(history, image):
gr.Info('Starting...' + message)
stop = StopOnTokens()
message = "Generate a product title for the image"
messages = [{"role": "system", "content": "You are a helpful assistant."}]
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
if len(messages) == 1:
message = f" <image>{message}"
messages.append({"role": "user", "content": message})
model_inputs = processor.tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
image = (
processor.feature_extractor(image)
.unsqueeze(0)
)
attention_mask = torch.ones(
1, model_inputs.shape[1] + processor.num_image_latents - 1
)
model_inputs = {
"input_ids": model_inputs,
"images": image,
"attention_mask": attention_mask
}
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
history.append([message, ""])
partial_response = ""
for new_token in streamer:
partial_response += new_token
history[-1][1] = partial_response
yield history
with gr.Blocks(css=css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(elem_id="col-container"):
image = gr.Image(type="pil")
message = gr.Textbox(interactive=True, show_label=False, container=False)
chat = gr.Chatbot(show_label=False)
submit = gr.Button(value="Upload", variant="primary")
with gr.Column():
output = gr.Image(type="pil")
response_handler = (
response,
[chat, image],
[chat]
)
# postresponse_handler = (
# lambda: (gr.Button(visible=False), gr.Button(visible=True)),
# None,
# [submit]
# )
event = submit.click(*response_handler)
# event.then(*postresponse_handler)
demo.launch()