File size: 3,353 Bytes
8ff5883
563f98d
7d58261
 
 
563f98d
 
e0c81f0
563f98d
bc3802f
6770ba9
bc3802f
 
 
 
 
 
 
7d58261
 
 
 
 
 
 
 
 
 
 
 
8e0a954
29ba44d
7d58261
8e0a954
7d58261
 
 
 
 
 
605b0aa
 
 
7d58261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14eb553
7d58261
c739636
 
6bf6d32
c739636
 
 
 
 
6bf6d32
c739636
252e8ea
fb7a950
 
8e0a954
14eb553
fb7a950
bc3802f
14eb553
 
 
 
 
60eaa44
252e8ea
c4d9f0b
e80c4ee
bc3802f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from threading import Thread
import gradio as gr
import torch
from transformers import AutoModel, AutoProcessor
from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList


device = "cuda:0" if torch.cuda.is_available() else "cpu"


title = """<h1 style="text-align: center;">Product description generator</h1>"""
css = """
div#col-container {
    margin: 0 auto;
    max-width: 840px;
}
"""

model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True)

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [151645]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

@torch.no_grad()
def response(history, image):
    gr.Info('Starting...' + message)
    stop = StopOnTokens()
    message = "Generate a product title for the image"
    messages = [{"role": "system", "content": "You are a helpful assistant."}]

    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})

    if len(messages) == 1:
        message = f" <image>{message}"
    
    messages.append({"role": "user", "content": message})

    model_inputs = processor.tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        return_tensors="pt"
    )

    image = (
            processor.feature_extractor(image)
            .unsqueeze(0)
    )

    attention_mask = torch.ones(
        1, model_inputs.shape[1] + processor.num_image_latents - 1
    )
    
    model_inputs = {
        "input_ids": model_inputs,
        "images": image,
        "attention_mask": attention_mask
    }

    model_inputs = {k: v.to(device) for k, v in model_inputs.items()}

    streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=1024,
        stopping_criteria=StoppingCriteriaList([stop])
        )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    history.append([message, ""])
    partial_response = ""
    for new_token in streamer:
        partial_response += new_token
        history[-1][1] = partial_response
        yield history

with gr.Blocks(css=css) as demo:
    gr.HTML(title)
    with gr.Row():
        with gr.Column(elem_id="col-container"):
            image = gr.Image(type="pil")
            message = gr.Textbox(interactive=True, show_label=False, container=False)
            chat = gr.Chatbot(show_label=False)
            submit = gr.Button(value="Upload", variant="primary")
        with gr.Column():
            output = gr.Image(type="pil")
        
    response_handler = (
        response,
        [chat, image],
        [chat]
    )

    # postresponse_handler = (
    #     lambda: (gr.Button(visible=False), gr.Button(visible=True)),
    #     None,
    #     [submit]
    # )

    event = submit.click(*response_handler)
    # event.then(*postresponse_handler)

demo.launch()