Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load DialoGPT model and tokenizer | |
model_name = "microsoft/DialoGPT-large" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Respond function for Gradio interface | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Format the chat history for the DialoGPT model | |
full_conversation = "" | |
for user_msg, bot_msg in history: | |
if user_msg: | |
full_conversation += f"User: {user_msg}\n" | |
if bot_msg: | |
full_conversation += f"DialoGPT: {bot_msg}\n" | |
full_conversation += f"User: {message}\nDialoGPT:" | |
# Tokenize input and generate response | |
inputs = tokenizer.encode(full_conversation, return_tensors="pt") | |
outputs = model.generate( | |
inputs, | |
max_length=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
response = tokenizer.decode(outputs[:, inputs.shape[-1] :][0], skip_special_tokens=True) | |
return response | |
# Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
# Launch the Gradio app with API enabled | |
demo.launch(enable_api=True) | |