prakhardoneria commited on
Commit
f364d75
·
verified ·
1 Parent(s): 0550294

Changed Model

Browse files
Files changed (1) hide show
  1. app.py +29 -33
app.py CHANGED
@@ -1,12 +1,13 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
9
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -15,34 +16,28 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -59,6 +54,7 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
 
 
 
 
4
 
5
+ # Load DialoGPT model and tokenizer
6
+ model_name = "microsoft/DialoGPT-large"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name)
9
 
10
+ # Respond function for Gradio interface
11
  def respond(
12
  message,
13
  history: list[tuple[str, str]],
 
16
  temperature,
17
  top_p,
18
  ):
19
+ # Format the chat history for the DialoGPT model
20
+ full_conversation = ""
21
+ for user_msg, bot_msg in history:
22
+ if user_msg:
23
+ full_conversation += f"User: {user_msg}\n"
24
+ if bot_msg:
25
+ full_conversation += f"DialoGPT: {bot_msg}\n"
26
+ full_conversation += f"User: {message}\nDialoGPT:"
27
+
28
+ # Tokenize input and generate response
29
+ inputs = tokenizer.encode(full_conversation, return_tensors="pt")
30
+ outputs = model.generate(
31
+ inputs,
32
+ max_length=max_tokens,
 
 
33
  temperature=temperature,
34
  top_p=top_p,
35
+ pad_token_id=tokenizer.eos_token_id,
36
+ )
37
+ response = tokenizer.decode(outputs[:, inputs.shape[-1] :][0], skip_special_tokens=True)
38
+ return response
 
39
 
40
+ # Gradio Chat Interface
 
 
 
41
  demo = gr.ChatInterface(
42
  respond,
43
  additional_inputs=[
 
54
  ],
55
  )
56
 
 
57
  if __name__ == "__main__":
58
+ # Launch the Gradio app with API enabled
59
+ demo.launch(enable_api=True)
60
+