Spaces:
Sleeping
Sleeping
fix
Browse files- app.py +83 -93
- server2.py +0 -150
app.py
CHANGED
@@ -1,13 +1,18 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
import seaborn as sns
|
4 |
import matplotlib.pyplot as plt
|
5 |
import joblib
|
6 |
-
from sklearn.tree import DecisionTreeClassifier, XGBClassifier #using sklearn decisiontreeclassifier
|
7 |
-
from sklearn.model_selection import train_test_split
|
8 |
-
|
9 |
import os
|
10 |
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Define the directory for FHE client/server files
|
13 |
fhe_directory = '/tmp/fhe_client_server_files/'
|
@@ -20,113 +25,68 @@ else:
|
|
20 |
shutil.rmtree(fhe_directory)
|
21 |
os.makedirs(fhe_directory)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
data.info() #checking the info
|
27 |
-
|
28 |
-
data_corr=data.corr()
|
29 |
-
|
30 |
-
plt.figure(figsize=(20,20))
|
31 |
-
sns.heatmap(data=data_corr,annot=True)
|
32 |
-
#Heatmap for data
|
33 |
-
"""
|
34 |
-
# Get the Data
|
35 |
-
X_train, y_train, X_val, y_val = train_test_split()
|
36 |
-
classifier = XGBClassifier()
|
37 |
-
# Training the Model
|
38 |
-
classifier = classifier.fit(X_train, y_train)
|
39 |
-
# Trained Model Evaluation on Validation Dataset
|
40 |
-
confidence = classifier.score(X_val, y_val)
|
41 |
-
# Validation Data Prediction
|
42 |
-
y_pred = classifier.predict(X_val)
|
43 |
-
# Model Validation Accuracy
|
44 |
-
accuracy = accuracy_score(y_val, y_pred)
|
45 |
-
# Model Confusion Matrix
|
46 |
-
conf_mat = confusion_matrix(y_val, y_pred)
|
47 |
-
# Model Classification Report
|
48 |
-
clf_report = classification_report(y_val, y_pred)
|
49 |
-
# Model Cross Validation Score
|
50 |
-
score = cross_val_score(classifier, X_val, y_val, cv=3)
|
51 |
-
|
52 |
-
try:
|
53 |
-
# Load Trained Model
|
54 |
-
clf = load(str(self.model_save_path + saved_model_name + ".joblib"))
|
55 |
-
except Exception as e:
|
56 |
-
print("Model not found...")
|
57 |
-
|
58 |
-
if test_data is not None:
|
59 |
-
result = clf.predict(test_data)
|
60 |
-
print(result)
|
61 |
-
else:
|
62 |
-
result = clf.predict(self.test_features)
|
63 |
-
accuracy = accuracy_score(self.test_labels, result)
|
64 |
-
clf_report = classification_report(self.test_labels, result)
|
65 |
-
print(accuracy, clf_report)
|
66 |
-
"""
|
67 |
-
####################
|
68 |
-
feature_value=np.array(data_corr['output'])
|
69 |
-
for i in range(len(feature_value)):
|
70 |
-
if feature_value[i]<0:
|
71 |
-
feature_value[i]=-feature_value[i]
|
72 |
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
|
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
Y=clean_data['output']
|
88 |
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
-
|
|
|
|
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
sc=StandardScaler()
|
96 |
-
x_train=sc.fit_transform(x_train)
|
97 |
-
x_test=sc.transform(x_test)
|
98 |
-
|
99 |
-
#training our model
|
100 |
-
dt=XGBClassifier(criterion='entropy',max_depth=6)
|
101 |
-
dt.fit(x_train,y_train)
|
102 |
-
#dt.compile(x_trqin)
|
103 |
|
104 |
-
#
|
105 |
-
|
|
|
|
|
106 |
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
print(conf_mat)
|
111 |
-
accuracy=dt.score(x_test,y_test)
|
112 |
-
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")
|
113 |
|
|
|
114 |
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits = 10) #de FHE
|
120 |
fhe_compatible.compile(x_train)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
#### server
|
128 |
-
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
129 |
-
|
130 |
# Setup the development environment
|
131 |
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
132 |
dev.save()
|
@@ -134,3 +94,33 @@ dev.save()
|
|
134 |
# Setup the server
|
135 |
server = FHEModelServer(path_dir=fhe_directory)
|
136 |
server.load()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import seaborn as sns
|
5 |
import matplotlib.pyplot as plt
|
6 |
import joblib
|
|
|
|
|
|
|
7 |
import os
|
8 |
import shutil
|
9 |
+
from xgboost import XGBClassifier
|
10 |
+
from sklearn.tree import DecisionTreeClassifier
|
11 |
+
from sklearn.model_selection import train_test_split
|
12 |
+
from sklearn.preprocessing import StandardScaler
|
13 |
+
from sklearn.metrics import confusion_matrix
|
14 |
+
from concrete.ml.sklearn.tree import XGBClassifier as ConcreteXGBClassifier
|
15 |
+
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
16 |
|
17 |
# Define the directory for FHE client/server files
|
18 |
fhe_directory = '/tmp/fhe_client_server_files/'
|
|
|
25 |
shutil.rmtree(fhe_directory)
|
26 |
os.makedirs(fhe_directory)
|
27 |
|
28 |
+
# Streamlit title
|
29 |
+
st.title("Heart Disease Prediction Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Load the data
|
32 |
+
data = pd.read_csv('data/heart.xls')
|
33 |
+
st.write("### Dataset Information")
|
34 |
+
st.write(data.info())
|
35 |
|
36 |
+
# Correlation matrix
|
37 |
+
data_corr = data.corr()
|
38 |
+
plt.figure(figsize=(20, 20))
|
39 |
+
sns.heatmap(data=data_corr, annot=True)
|
40 |
+
st.write("### Correlation Heatmap")
|
41 |
+
st.pyplot(plt)
|
42 |
|
43 |
+
# Feature selection based on correlation
|
44 |
+
feature_value = np.abs(data_corr['output']) # Use absolute values for correlation
|
45 |
+
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
46 |
+
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
47 |
+
feature_selected = feature_sorted.index.tolist()
|
48 |
|
49 |
+
st.write("### Selected Features Based on Correlation")
|
50 |
+
st.write(feature_selected)
|
51 |
|
52 |
+
clean_data = data[feature_selected]
|
53 |
|
54 |
+
# Prepare data for model training
|
55 |
+
X = clean_data.iloc[:, 1:]
|
56 |
+
Y = clean_data['output']
|
57 |
+
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=0)
|
58 |
|
59 |
+
st.write("### Training and Test Set Shapes")
|
60 |
+
st.write(f"Train shape: {x_train.shape}, Test shape: {x_test.shape}")
|
|
|
61 |
|
62 |
+
# Feature scaling
|
63 |
+
sc = StandardScaler()
|
64 |
+
x_train = sc.fit_transform(x_train)
|
65 |
+
x_test = sc.transform(x_test)
|
66 |
|
67 |
+
# Train the model
|
68 |
+
dt = XGBClassifier(max_depth=6)
|
69 |
+
dt.fit(x_train, y_train)
|
70 |
|
71 |
+
# Make predictions
|
72 |
+
y_pred = dt.predict(x_test)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Confusion matrix
|
75 |
+
conf_mat = confusion_matrix(y_test, y_pred)
|
76 |
+
st.write("### Confusion Matrix")
|
77 |
+
st.write(conf_mat)
|
78 |
|
79 |
+
# Model accuracy
|
80 |
+
accuracy = dt.score(x_test, y_test)
|
81 |
+
st.write(f"### Model Accuracy: {round(accuracy * 100, 2)}%")
|
|
|
|
|
|
|
82 |
|
83 |
+
# Save the model
|
84 |
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
85 |
|
86 |
+
# Prepare FHE compatible model
|
87 |
+
fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits=10)
|
|
|
|
|
88 |
fhe_compatible.compile(x_train)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
# Setup the development environment
|
91 |
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
92 |
dev.save()
|
|
|
94 |
# Setup the server
|
95 |
server = FHEModelServer(path_dir=fhe_directory)
|
96 |
server.load()
|
97 |
+
|
98 |
+
# Setup the client
|
99 |
+
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
|
100 |
+
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
101 |
+
|
102 |
+
# Load the dataset and perform correlation analysis
|
103 |
+
data = pd.read_csv('data/heart.xls')
|
104 |
+
data_corr = data.corr()
|
105 |
+
|
106 |
+
# Select features based on correlation with 'output'
|
107 |
+
feature_value = np.abs(data_corr['output'])
|
108 |
+
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
109 |
+
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
110 |
+
feature_selected = feature_sorted.index.tolist()
|
111 |
+
|
112 |
+
# Clean the data by selecting the most correlated features
|
113 |
+
clean_data = data[feature_selected]
|
114 |
+
|
115 |
+
# Extract the first row of feature data for prediction
|
116 |
+
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
|
117 |
+
|
118 |
+
# Encrypt the sample data
|
119 |
+
encrypted_data = client.quantize_encrypt_serialize(sample_data)
|
120 |
+
|
121 |
+
# Run the server and get results
|
122 |
+
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys)
|
123 |
+
result = client.deserialize_decrypt_dequantize(encrypted_result)
|
124 |
+
|
125 |
+
st.write("### Prediction Result")
|
126 |
+
st.write(result)
|
server2.py
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import pandas as pd
|
3 |
-
import seaborn as sns
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import joblib
|
6 |
-
|
7 |
-
import os
|
8 |
-
import shutil
|
9 |
-
|
10 |
-
# Define the directory for FHE client/server files
|
11 |
-
fhe_directory = '/tmp/fhe_client_server_files/'
|
12 |
-
|
13 |
-
# Create the directory if it does not exist
|
14 |
-
if not os.path.exists(fhe_directory):
|
15 |
-
os.makedirs(fhe_directory)
|
16 |
-
else:
|
17 |
-
# If it exists, delete its contents
|
18 |
-
shutil.rmtree(fhe_directory)
|
19 |
-
os.makedirs(fhe_directory)
|
20 |
-
|
21 |
-
data=pd.read_csv('data/heart.xls')
|
22 |
-
|
23 |
-
data.info() #checking the info
|
24 |
-
|
25 |
-
data_corr=data.corr()
|
26 |
-
|
27 |
-
plt.figure(figsize=(20,20))
|
28 |
-
sns.heatmap(data=data_corr,annot=True)
|
29 |
-
#Heatmap for data
|
30 |
-
|
31 |
-
feature_value=np.array(data_corr['output'])
|
32 |
-
for i in range(len(feature_value)):
|
33 |
-
if feature_value[i]<0:
|
34 |
-
feature_value[i]=-feature_value[i]
|
35 |
-
|
36 |
-
print(feature_value)
|
37 |
-
|
38 |
-
features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation'])
|
39 |
-
|
40 |
-
feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False)
|
41 |
-
|
42 |
-
feature_selected=feature_sorted.index
|
43 |
-
|
44 |
-
feature_selected #selected features which are very much correalated
|
45 |
-
|
46 |
-
clean_data=data[feature_selected]
|
47 |
-
|
48 |
-
from xgboost import XGBClassifier
|
49 |
-
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
|
50 |
-
from sklearn.model_selection import train_test_split
|
51 |
-
|
52 |
-
#making input and output dataset
|
53 |
-
X=clean_data.iloc[:,1:]
|
54 |
-
Y=clean_data['output']
|
55 |
-
|
56 |
-
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0)
|
57 |
-
|
58 |
-
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) #data is splited in traing and testing dataset
|
59 |
-
|
60 |
-
# feature scaling
|
61 |
-
from sklearn.preprocessing import StandardScaler
|
62 |
-
sc=StandardScaler()
|
63 |
-
x_train=sc.fit_transform(x_train)
|
64 |
-
x_test=sc.transform(x_test)
|
65 |
-
|
66 |
-
#training our model
|
67 |
-
dt=XGBClassifier(max_depth=6)
|
68 |
-
dt.fit(x_train,y_train)
|
69 |
-
#dt.compile(x_trqin)
|
70 |
-
|
71 |
-
#predicting the value on testing data
|
72 |
-
y_pred=dt.predict(x_test)
|
73 |
-
|
74 |
-
#ploting the data
|
75 |
-
from sklearn.metrics import confusion_matrix
|
76 |
-
conf_mat=confusion_matrix(y_test,y_pred)
|
77 |
-
print(conf_mat)
|
78 |
-
accuracy=dt.score(x_test,y_test)
|
79 |
-
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")
|
80 |
-
|
81 |
-
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
82 |
-
|
83 |
-
from concrete.ml.sklearn.tree import XGBClassifier as ConcreteXGBClassifier
|
84 |
-
|
85 |
-
fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits = 10)
|
86 |
-
fhe_compatible.compile(x_train)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### server
|
94 |
-
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
95 |
-
|
96 |
-
# Setup the development environment
|
97 |
-
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
98 |
-
dev.save()
|
99 |
-
|
100 |
-
# Setup the server
|
101 |
-
server = FHEModelServer(path_dir=fhe_directory)
|
102 |
-
server.load()
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
####### client
|
111 |
-
|
112 |
-
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
113 |
-
|
114 |
-
# Setup the client
|
115 |
-
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
|
116 |
-
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
117 |
-
|
118 |
-
|
119 |
-
# Load the dataset and select the relevant features
|
120 |
-
data = pd.read_csv('data/heart.xls')
|
121 |
-
|
122 |
-
# Perform the correlation analysis
|
123 |
-
data_corr = data.corr()
|
124 |
-
|
125 |
-
# Select features based on correlation with 'output'
|
126 |
-
feature_value = np.array(data_corr['output'])
|
127 |
-
for i in range(len(feature_value)):
|
128 |
-
if feature_value[i] < 0:
|
129 |
-
feature_value[i] = -feature_value[i]
|
130 |
-
|
131 |
-
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
132 |
-
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
133 |
-
feature_selected = feature_sorted.index
|
134 |
-
|
135 |
-
# Clean the data by selecting the most correlated features
|
136 |
-
clean_data = data[feature_selected]
|
137 |
-
|
138 |
-
# Extract the first row of feature data for prediction (excluding 'output' column)
|
139 |
-
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
|
140 |
-
|
141 |
-
encrypted_data = client.quantize_encrypt_serialize(sample_data)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
##### end client
|
146 |
-
|
147 |
-
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys)
|
148 |
-
|
149 |
-
result = client.deserialize_decrypt_dequantize(encrypted_result)
|
150 |
-
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|