Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- server2.py +4 -3
server2.py
CHANGED
@@ -45,6 +45,7 @@ feature_selected #selected features which are very much correalated
|
|
45 |
|
46 |
clean_data=data[feature_selected]
|
47 |
|
|
|
48 |
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
|
49 |
from sklearn.model_selection import train_test_split
|
50 |
|
@@ -63,7 +64,7 @@ x_train=sc.fit_transform(x_train)
|
|
63 |
x_test=sc.transform(x_test)
|
64 |
|
65 |
#training our model
|
66 |
-
dt=
|
67 |
dt.fit(x_train,y_train)
|
68 |
#dt.compile(x_trqin)
|
69 |
|
@@ -79,9 +80,9 @@ print("\nThe accuracy of decisiontreelassifier on Heart disease prediction datas
|
|
79 |
|
80 |
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
81 |
|
82 |
-
from concrete.ml.sklearn.tree import
|
83 |
|
84 |
-
fhe_compatible =
|
85 |
fhe_compatible.compile(x_train)
|
86 |
|
87 |
|
|
|
45 |
|
46 |
clean_data=data[feature_selected]
|
47 |
|
48 |
+
from xgboost import XGBClassifier
|
49 |
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
|
50 |
from sklearn.model_selection import train_test_split
|
51 |
|
|
|
64 |
x_test=sc.transform(x_test)
|
65 |
|
66 |
#training our model
|
67 |
+
dt=XGBClassifier(max_depth=6)
|
68 |
dt.fit(x_train,y_train)
|
69 |
#dt.compile(x_trqin)
|
70 |
|
|
|
80 |
|
81 |
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
82 |
|
83 |
+
from concrete.ml.sklearn.tree import XGBClassifier as ConcreteXGBClassifier
|
84 |
|
85 |
+
fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits = 10)
|
86 |
fhe_compatible.compile(x_train)
|
87 |
|
88 |
|