Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 4,154 Bytes
			
			| 424ded8 9539d3f 0439b4c dae9913 0439b4c 424ded8 0b4346d 061103a 2b5ab1c 424ded8 f93e307 11954b4 51bec36 11954b4 424ded8 061103a 48a339d 424ded8 469ea1a 424ded8 061103a | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | import gradio as gr
# from huggingface_hub import InferenceClient
from transformers import pipeline
import os
# Retrieve the Hugging Face API token from environment variables
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
    raise ValueError("API token is not set. Please set the HF_TOKEN environment variable in Space Settings.")
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# requires space hardware update to use large models (TODO)
# client = InferenceClient("mistralai/Mistral-Large-Instruct-2407")
# Note change in instantiation***
# pipeline move to func
# text_generator = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", use_auth_token=hf_token, trust_remote_code=True)
def authenticate_and_generate(message, history, system_message, max_tokens, temperature, top_p):
    try:
        # Initialize the text-generation pipeline with the provided token
        text_generator = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", use_auth_token=hf_token, trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") 
        
        if text_generator.tokenizer is None:
            raise RuntimeError("Failed to load the tokenizer. Ensure the model and API token are correct.")
        
        # Ensure that system_message is a string
        system_message = str(system_message)
        
        # Construct the prompt with system message, history, and user input
        history_str = "\n".join([f"User: {str(msg[0])}\nAssistant: {str(msg[1])}" for msg in history if isinstance(msg, (tuple, list)) and len(msg) == 2])
        prompt = system_message + "\n" + history_str
        prompt += f"\nUser: {message}\nAssistant:"
        # Generate a response using the model
        response = text_generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, truncation=True)
        # Extract the generated text from the response list
        assistant_response = response[0]['generated_text']
        # Optionally trim the assistant response if it includes the prompt again
        assistant_response = assistant_response.split("Assistant:", 1)[-1].strip()
        return assistant_response
    except Exception as e:
        return str(e)  # Return the error message for debugging
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
athena = gr.ChatInterface(
    fn=authenticate_and_generate,
    additional_inputs=[
        gr.Textbox(value=
                   """
                   You are a marketing-minded content writer for Plan.com (a UK telecommunications company).
                   You will be provided a bullet-point list of guidelines from which to generate an article to be published in the company News section of the website. 
                   Please follow these guidelines:
                   - Always speak using British English expressions, syntax, and spelling.
                   - Make the articles engaging and fun, but also professional and informative.
                   To provide relevant contextual information about the company, please source information from the following websites:
                   - https://plan.com/our-story
                   - https://plan.com/products-services
                   - https://plan.com/features/productivity-and-performance
                   - https://plan.com/features/security-and-connectivity
                   - https://plan.com/features/connectivity-and-cost
                   """, 
                   label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)
if __name__ == "__main__":
    athena.launch() | 
