ZennethKenneth commited on
Commit
48a339d
·
verified ·
1 Parent(s): cd83418

introduce auth

Browse files
Files changed (1) hide show
  1. app.py +13 -3
app.py CHANGED
@@ -10,13 +10,16 @@ For more information on `huggingface_hub` Inference API support, please check th
10
  # Note change in instantiation***
11
  text_generator = pipeline("text-generation", model="google/gemma-2-2b")
12
 
13
- def respond(message, history, system_message, max_tokens, temperature, top_p):
 
 
 
14
  # Construct the prompt with system message, history, and user input
15
  prompt = system_message + "\n" + "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[0] and msg[1]])
16
  prompt += f"\nUser: {message}\nAssistant:"
17
 
18
  # Generate a response using the model
19
- response = text_generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, truncation=False)
20
 
21
  # Extract the generated text from the response list
22
  assistant_response = response[0]['generated_text']
@@ -28,8 +31,15 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
28
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
29
  """
30
  athena = gr.ChatInterface(
31
- fn=respond,
32
  additional_inputs=[
 
 
 
 
 
 
 
33
  gr.Textbox(value=
34
  """
35
  You are a marketing-minded content writer for Plan.com (a UK telecommunications company).
 
10
  # Note change in instantiation***
11
  text_generator = pipeline("text-generation", model="google/gemma-2-2b")
12
 
13
+ def authenticate_and_generate(token, message, history, system_message, max_tokens, temperature, top_p):
14
+ # Initialize the text-generation pipeline with the provided token
15
+ text_generator = pipeline("text-generation", model="google/gemma-2-2b", use_auth_token=token)
16
+
17
  # Construct the prompt with system message, history, and user input
18
  prompt = system_message + "\n" + "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[0] and msg[1]])
19
  prompt += f"\nUser: {message}\nAssistant:"
20
 
21
  # Generate a response using the model
22
+ response = text_generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, truncation=True)
23
 
24
  # Extract the generated text from the response list
25
  assistant_response = response[0]['generated_text']
 
31
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
32
  """
33
  athena = gr.ChatInterface(
34
+ fn=authenticate_and_generate,
35
  additional_inputs=[
36
+ gr.Textbox(
37
+ label="Hugging Face API Token",
38
+ type="password",
39
+ placeholder="Please provide a Hugging Face auth token.",
40
+ lines=1,
41
+ max_lines=1
42
+ ),
43
  gr.Textbox(value=
44
  """
45
  You are a marketing-minded content writer for Plan.com (a UK telecommunications company).