Spaces:
Running
Running
File size: 15,743 Bytes
88bd3ae 809312a 88bd3ae 809312a 88bd3ae 809312a 88bd3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
from huggingface_hub import snapshot_download
import gradio as gr
import openvino_genai
import librosa
import numpy as np
from threading import Lock, Event
from scipy.ndimage import uniform_filter1d
from queue import Queue, Empty
from googleapiclient.discovery import build
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import cpuinfo
import gc
import os
# Set CPU affinity for optimization
os.environ["GOMP_CPU_AFFINITY"] = "0-7" # Use first 8 CPU cores
os.environ["OMP_NUM_THREADS"] = "8"
# Configuration constants
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
GOOGLE_CSE_ID = "3027bedf3c88a4efb"
DEFAULT_MAX_TOKENS = 100
DEFAULT_NUM_IMAGES = 1
MAX_HISTORY_TURNS = 2
MAX_TOKENS_LIMIT = 1000
# Download models
start_time = time.time()
snapshot_download(repo_id="OpenVINO/mistral-7b-instruct-v0.1-int8-ov", local_dir="mistral-ov")
snapshot_download(repo_id="OpenVINO/whisper-tiny-fp16-ov", local_dir="whisper-ov-model")
print(f"Model download time: {time.time() - start_time:.2f} seconds")
# CPU-specific configuration
cpu_features = cpuinfo.get_cpu_info()['flags']
config_options = {}
if 'avx512' in cpu_features:
config_options["ENFORCE_BF16"] = "YES"
print("Using AVX512 optimizations")
elif 'avx2' in cpu_features:
config_options["INFERENCE_PRECISION_HINT"] = "f32"
print("Using AVX2 optimizations")
# Initialize models with performance flags
start_time = time.time()
mistral_pipe = openvino_genai.LLMPipeline(
"mistral-ov",
device="CPU",
config={
"PERFORMANCE_HINT": "THROUGHPUT",
**config_options
}
)
whisper_pipe = openvino_genai.WhisperPipeline(
"whisper-ov-model",
device="CPU"
)
pipe_lock = Lock()
print(f"Model initialization time: {time.time() - start_time:.2f} seconds")
# Warm up models
print("Warming up models...")
start_time = time.time()
with pipe_lock:
mistral_pipe.generate("Warmup", openvino_genai.GenerationConfig(max_new_tokens=10))
whisper_pipe.generate(np.zeros(16000, dtype=np.float32))
print(f"Model warmup time: {time.time() - start_time:.2f} seconds")
# Thread pools
generation_executor = ThreadPoolExecutor(max_workers=4) # Increased workers
image_executor = ThreadPoolExecutor(max_workers=8)
def fetch_images(query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
"""Fetch unique images by requesting different result pages"""
start_time = time.time()
if num <= 0:
return []
try:
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
image_links = []
seen_urls = set() # To track unique URLs
# Start from different positions to get unique images
for start_index in range(1, num * 2, 2): # Step by 2 to get different pages
if len(image_links) >= num:
break
res = service.cse().list(
q=query,
cx=GOOGLE_CSE_ID,
searchType="image",
num=1, # Get one result per request
start=start_index # Start at different positions
).execute()
if "items" in res and res["items"]:
item = res["items"][0]
# Skip duplicates
if item["link"] not in seen_urls:
image_links.append(item["link"])
seen_urls.add(item["link"])
print(f"Unique image fetch time: {time.time() - start_time:.2f} seconds")
return image_links[:num] # Return only the requested number
except Exception as e:
print(f"Error in image fetching: {e}")
return []
def process_audio(data, sr):
start_time = time.time()
data = librosa.to_mono(data.T) if data.ndim > 1 else data
data = data.astype(np.float32)
data /= np.max(np.abs(data))
rms = librosa.feature.rms(y=data, frame_length=2048, hop_length=512)[0]
smoothed_rms = uniform_filter1d(rms, size=5)
speech_frames = np.where(smoothed_rms > 0.025)[0]
if not speech_frames.size:
print(f"Audio processing time: {time.time() - start_time:.2f} seconds")
return None
start = max(0, int(speech_frames[0] * 512 - 0.1 * sr))
end = min(len(data), int((speech_frames[-1] + 1) * 512 + 0.1 * sr))
print(f"Audio processing time: {time.time() - start_time:.2f} seconds")
return data[start:end]
def transcribe(audio):
start_time = time.time()
if audio is None:
print(f"Transcription time: {time.time() - start_time:.2f} seconds")
return ""
sr, data = audio
processed = process_audio(data, sr)
if processed is None or len(processed) < 1600:
print(f"Transcription time: {time.time() - start_time:.2f} seconds")
return ""
if sr != 16000:
processed = librosa.resample(processed, orig_sr=sr, target_sr=16000)
result = whisper_pipe.generate(processed)
print(f"Transcription time: {time.time() - start_time:.2f} seconds")
return result
def stream_answer(message: str, max_tokens: int, include_images: bool) -> str:
start_time = time.time()
response_queue = Queue()
completion_event = Event()
error = [None]
optimized_config = openvino_genai.GenerationConfig(
max_new_tokens=max_tokens,
num_beams=1,
do_sample=False,
temperature=1.0,
top_p=0.9,
top_k=30,
streaming=True,
streaming_interval=5 # Batch tokens in groups of 5
)
def callback(tokens): # Now accepts multiple tokens
response_queue.put("".join(tokens))
return openvino_genai.StreamingStatus.RUNNING
def generate():
try:
with pipe_lock:
mistral_pipe.generate(message, optimized_config, callback)
except Exception as e:
error[0] = str(e)
finally:
completion_event.set()
generation_executor.submit(generate)
accumulated = []
token_count = 0
last_gc = time.time()
while not completion_event.is_set() or not response_queue.empty():
if error[0]:
yield f"Error: {error[0]}"
print(f"Stream answer time: {time.time() - start_time:.2f} seconds")
return
try:
token_batch = response_queue.get_nowait()
accumulated.append(token_batch)
token_count += len(token_batch)
# Periodic garbage collection
if time.time() - last_gc > 2.0: # Every 2 seconds
gc.collect()
last_gc = time.time()
yield "".join(accumulated)
except Empty:
continue
print(f"Generated {token_count} tokens in {time.time() - start_time:.2f} seconds "
f"({token_count/(time.time() - start_time):.2f} tokens/sec)")
yield "".join(accumulated)
def run_chat(message: str, history: list, include_images: bool, max_tokens: int, num_images: int):
start_time = time.time()
final_text = ""
# Create a placeholder for the streaming response
history.append((message, "", []))
rendered_history = render_history(history)
yield rendered_history, gr.update(value="", interactive=False)
# Stream tokens and update chatbot in real-time
for output in stream_answer(message, max_tokens, include_images):
final_text = output
# Update only the last response in history
updated_history = history[:-1] + [(message, final_text, [])]
rendered_history = render_history(updated_history)
yield rendered_history, gr.update(value="", interactive=False)
images = []
if include_images:
images = fetch_images(message, num_images)
# Update history with final response and images
history[-1] = (message, final_text, images)
if len(history) > MAX_HISTORY_TURNS:
history = history[-MAX_HISTORY_TURNS:]
rendered_history = render_history(history)
print(f"Total chat time: {time.time() - start_time:.2f} seconds")
yield rendered_history, gr.update(value="", interactive=True)
def render_history(history):
start_time = time.time()
rendered = []
for user_msg, bot_msg, image_links in history:
text = bot_msg
if image_links:
images_html = "".join(
f"<img src='{url}' class='chat-image' onclick='showImage(\"{url}\")' />"
for url in image_links
)
text += f"<br><br><b>📸 Related Visuals:</b><br><div style='display: flex; flex-wrap: wrap;'>{images_html}</div>"
rendered.append((user_msg, text))
return rendered
with gr.Blocks(css="""
.processing {
animation: pulse 1.5s infinite;
color: #4a5568;
padding: 10px;
border-radius: 5px;
text-align: center;
margin: 10px 0;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.chat-image {
cursor: pointer;
transition: transform 0.2s;
max-height: 100px;
margin: 4px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.chat-image:hover {
transform: scale(1.05);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
.modal {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(0,0,0,0.8);
display: none;
z-index: 1000;
cursor: zoom-out;
}
.modal-content {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
max-width: 90%;
max-height: 90%;
background: white;
padding: 10px;
border-radius: 12px;
}
.modal-img {
width: auto;
height: auto;
max-width: 100%;
max-height: 100%;
border-radius: 8px;
}
.chat-container {
border: 1px solid #e5e7eb;
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
}
.slider-container {
margin-top: 20px;
padding: 15px;
border-radius: 10px;
background-color: #f8f9fa;
}
.slider-label {
font-weight: bold;
margin-bottom: 5px;
}
.system-info {
background-color: #7B9BDB;
padding: 15px;
border-radius: 8px;
margin: 15px 0;
border-left: 4px solid #1890ff;
}
.typing-indicator {
display: inline-block;
position: relative;
width: 40px;
height: 20px;
}
.typing-dot {
display: inline-block;
width: 6px;
height: 6px;
border-radius: 50%;
background-color: #4a5568;
position: absolute;
animation: typing 1.4s infinite ease-in-out;
}
.typing-dot:nth-child(1) {
left: 0;
animation-delay: 0s;
}
.typing-dot:nth-child(2) {
left: 12px;
animation-delay: 0.2s;
}
.typing-dot:nth-child(3) {
left: 24px;
animation-delay: 0.4s;
}
@keyframes typing {
0%, 60%, 100% { transform: translateY(0); }
30% { transform: translateY(-5px); }
}
""") as demo:
gr.Markdown("# 🤖 EDU CHAT BY PHANINDRA REDDY K")
# System info banner
gr.HTML("""
<div class="system-info">
<strong>Performance Optimized for High-RAM Systems</strong>
<ul>
<li>Adaptive resource allocation based on request type</li>
</ul>
</div>
""")
modal_html = """
<div class="modal" id="imageModal" onclick="this.style.display='none'">
<div class="modal-content">
<img class="modal-img" id="expandedImg">
</div>
</div>
<script>
function showImage(url) {
document.getElementById('expandedImg').src = url;
document.getElementById('imageModal').style.display = 'block';
}
</script>
"""
gr.HTML(modal_html)
state = gr.State([])
with gr.Column(scale=2, elem_classes="chat-container"):
chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False)
with gr.Column(scale=1):
gr.Markdown("### 💬 Ask Your Question")
with gr.Row():
user_input = gr.Textbox(
placeholder="Type your question here...",
label="",
container=False,
elem_id="question-input"
)
include_images = gr.Checkbox(
label="Include Visuals",
value=True,
container=False,
elem_id="image-checkbox"
)
# Add the sliders container
with gr.Column(elem_classes="slider-container"):
gr.Markdown("### ⚙️ Generation Settings")
with gr.Row():
max_tokens = gr.Slider(
minimum=10,
maximum=MAX_TOKENS_LIMIT, # Increased to 1000
value=DEFAULT_MAX_TOKENS,
step=10,
label="Response Length (Tokens)",
info=f"Max: {MAX_TOKENS_LIMIT} tokens (for detailed explanations)",
elem_classes="slider-label"
)
# Conditionally visible image slider row
with gr.Row(visible=True) as image_slider_row:
num_images = gr.Slider(
minimum=0,
maximum=5,
value=DEFAULT_NUM_IMAGES,
step=1,
label="Number of Images",
info="Set to 0 to disable images",
elem_classes="slider-label"
)
with gr.Row():
submit_btn = gr.Button("Send Text", variant="primary")
mic_btn = gr.Button("Transcribe Voice", variant="secondary")
mic = gr.Audio(
sources=["microphone"],
type="numpy",
label="Voice Input",
show_label=False,
elem_id="voice-input"
)
processing = gr.HTML("""
<div id="processing" style="display: none;">
<div class="processing">🔮 Processing your request...</div>
</div>
""")
# Toggle image slider visibility based on checkbox
def toggle_image_slider(include_visuals):
return gr.update(visible=include_visuals)
include_images.change(
fn=toggle_image_slider,
inputs=include_images,
outputs=image_slider_row
)
def toggle_processing():
return gr.update(visible=True), gr.update(interactive=False)
def hide_processing():
return gr.update(visible=False), gr.update(interactive=True)
# Update the submit_btn click handler to include streaming
submit_btn.click(
fn=toggle_processing,
outputs=[processing, submit_btn]
).then(
fn=lambda: (gr.update(visible=True), gr.update(interactive=False)),
outputs=[processing, submit_btn]
).then(
fn=run_chat,
inputs=[user_input, state, include_images, max_tokens, num_images],
outputs=[chatbot, user_input]
).then(
fn=lambda: (gr.update(visible=False), gr.update(interactive=True)),
outputs=[processing, submit_btn]
)
# Voice transcription remains the same
mic_btn.click(
fn=toggle_processing,
outputs=[processing, mic_btn]
).then(
fn=transcribe,
inputs=mic,
outputs=user_input
).then(
fn=hide_processing,
outputs=[processing, mic_btn]
)
if __name__ == "__main__":
demo.launch(share=True, debug=True) |