Spaces:
Running
Running
Commit
·
88bd3ae
1
Parent(s):
4ad1a5e
Add application file
Browse files- app.py +495 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from huggingface_hub import snapshot_download
|
3 |
+
import gradio as gr
|
4 |
+
import openvino_genai
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
from threading import Lock, Event
|
8 |
+
from scipy.ndimage import uniform_filter1d
|
9 |
+
from queue import Queue, Empty
|
10 |
+
from googleapiclient.discovery import build
|
11 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
12 |
+
import time
|
13 |
+
import cpuinfo
|
14 |
+
import gc
|
15 |
+
import os
|
16 |
+
|
17 |
+
# Set CPU affinity for optimization
|
18 |
+
os.environ["GOMP_CPU_AFFINITY"] = "0-7" # Use first 8 CPU cores
|
19 |
+
os.environ["OMP_NUM_THREADS"] = "8"
|
20 |
+
|
21 |
+
# Configuration constants
|
22 |
+
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
|
23 |
+
GOOGLE_CSE_ID = "3027bedf3c88a4efb"
|
24 |
+
DEFAULT_MAX_TOKENS = 100
|
25 |
+
DEFAULT_NUM_IMAGES = 1
|
26 |
+
MAX_HISTORY_TURNS = 2
|
27 |
+
MAX_TOKENS_LIMIT = 1000
|
28 |
+
|
29 |
+
# Download models
|
30 |
+
start_time = time.time()
|
31 |
+
snapshot_download(repo_id="OpenVINO/mistral-7b-instruct-v0.1-int8-ov", local_dir="mistral-ov")
|
32 |
+
snapshot_download(repo_id="OpenVINO/whisper-tiny-fp16-ov", local_dir="whisper-ov-model")
|
33 |
+
print(f"Model download time: {time.time() - start_time:.2f} seconds")
|
34 |
+
|
35 |
+
# CPU-specific configuration
|
36 |
+
cpu_features = cpuinfo.get_cpu_info()['flags']
|
37 |
+
config_options = {}
|
38 |
+
if 'avx512' in cpu_features:
|
39 |
+
config_options["ENFORCE_BF16"] = "YES"
|
40 |
+
print("Using AVX512 optimizations")
|
41 |
+
elif 'avx2' in cpu_features:
|
42 |
+
config_options["INFERENCE_PRECISION_HINT"] = "f32"
|
43 |
+
print("Using AVX2 optimizations")
|
44 |
+
|
45 |
+
# Initialize models with performance flags
|
46 |
+
start_time = time.time()
|
47 |
+
mistral_pipe = openvino_genai.LLMPipeline(
|
48 |
+
"mistral-ov",
|
49 |
+
device="CPU",
|
50 |
+
config={
|
51 |
+
"PERFORMANCE_HINT": "THROUGHPUT",
|
52 |
+
**config_options
|
53 |
+
}
|
54 |
+
)
|
55 |
+
|
56 |
+
whisper_pipe = openvino_genai.WhisperPipeline(
|
57 |
+
"whisper-ov-model",
|
58 |
+
device="CPU"
|
59 |
+
)
|
60 |
+
pipe_lock = Lock()
|
61 |
+
print(f"Model initialization time: {time.time() - start_time:.2f} seconds")
|
62 |
+
|
63 |
+
# Warm up models
|
64 |
+
print("Warming up models...")
|
65 |
+
start_time = time.time()
|
66 |
+
with pipe_lock:
|
67 |
+
mistral_pipe.generate("Warmup", openvino_genai.GenerationConfig(max_new_tokens=10))
|
68 |
+
whisper_pipe.generate(np.zeros(16000, dtype=np.float32))
|
69 |
+
print(f"Model warmup time: {time.time() - start_time:.2f} seconds")
|
70 |
+
|
71 |
+
# Thread pools
|
72 |
+
generation_executor = ThreadPoolExecutor(max_workers=4) # Increased workers
|
73 |
+
image_executor = ThreadPoolExecutor(max_workers=8)
|
74 |
+
|
75 |
+
def fetch_images(query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
|
76 |
+
"""Fetch images in parallel using ThreadPoolExecutor"""
|
77 |
+
start_time = time.time()
|
78 |
+
|
79 |
+
if num <= 0:
|
80 |
+
return []
|
81 |
+
|
82 |
+
try:
|
83 |
+
futures = []
|
84 |
+
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
|
85 |
+
|
86 |
+
for _ in range(num):
|
87 |
+
future = image_executor.submit(
|
88 |
+
service.cse().list(q=query, cx=GOOGLE_CSE_ID, searchType="image", num=1).execute
|
89 |
+
)
|
90 |
+
futures.append(future)
|
91 |
+
|
92 |
+
image_links = []
|
93 |
+
for future in as_completed(futures):
|
94 |
+
try:
|
95 |
+
res = future.result()
|
96 |
+
if "items" in res and res["items"]:
|
97 |
+
image_links.append(res["items"][0]["link"])
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Image fetch error: {e}")
|
100 |
+
|
101 |
+
print(f"Parallel image fetch time: {time.time() - start_time:.2f} seconds")
|
102 |
+
return image_links
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error in image fetching: {e}")
|
105 |
+
return []
|
106 |
+
|
107 |
+
def process_audio(data, sr):
|
108 |
+
start_time = time.time()
|
109 |
+
data = librosa.to_mono(data.T) if data.ndim > 1 else data
|
110 |
+
data = data.astype(np.float32)
|
111 |
+
data /= np.max(np.abs(data))
|
112 |
+
rms = librosa.feature.rms(y=data, frame_length=2048, hop_length=512)[0]
|
113 |
+
smoothed_rms = uniform_filter1d(rms, size=5)
|
114 |
+
speech_frames = np.where(smoothed_rms > 0.025)[0]
|
115 |
+
if not speech_frames.size:
|
116 |
+
print(f"Audio processing time: {time.time() - start_time:.2f} seconds")
|
117 |
+
return None
|
118 |
+
start = max(0, int(speech_frames[0] * 512 - 0.1 * sr))
|
119 |
+
end = min(len(data), int((speech_frames[-1] + 1) * 512 + 0.1 * sr))
|
120 |
+
print(f"Audio processing time: {time.time() - start_time:.2f} seconds")
|
121 |
+
return data[start:end]
|
122 |
+
|
123 |
+
def transcribe(audio):
|
124 |
+
start_time = time.time()
|
125 |
+
if audio is None:
|
126 |
+
print(f"Transcription time: {time.time() - start_time:.2f} seconds")
|
127 |
+
return ""
|
128 |
+
sr, data = audio
|
129 |
+
processed = process_audio(data, sr)
|
130 |
+
if processed is None or len(processed) < 1600:
|
131 |
+
print(f"Transcription time: {time.time() - start_time:.2f} seconds")
|
132 |
+
return ""
|
133 |
+
if sr != 16000:
|
134 |
+
processed = librosa.resample(processed, orig_sr=sr, target_sr=16000)
|
135 |
+
result = whisper_pipe.generate(processed)
|
136 |
+
print(f"Transcription time: {time.time() - start_time:.2f} seconds")
|
137 |
+
return result
|
138 |
+
|
139 |
+
def stream_answer(message: str, max_tokens: int, include_images: bool) -> str:
|
140 |
+
start_time = time.time()
|
141 |
+
response_queue = Queue()
|
142 |
+
completion_event = Event()
|
143 |
+
error = [None]
|
144 |
+
|
145 |
+
optimized_config = openvino_genai.GenerationConfig(
|
146 |
+
max_new_tokens=max_tokens,
|
147 |
+
num_beams=1,
|
148 |
+
do_sample=False,
|
149 |
+
temperature=1.0,
|
150 |
+
top_p=0.9,
|
151 |
+
top_k=30,
|
152 |
+
streaming=True,
|
153 |
+
streaming_interval=5 # Batch tokens in groups of 5
|
154 |
+
)
|
155 |
+
|
156 |
+
def callback(tokens): # Now accepts multiple tokens
|
157 |
+
response_queue.put("".join(tokens))
|
158 |
+
return openvino_genai.StreamingStatus.RUNNING
|
159 |
+
|
160 |
+
def generate():
|
161 |
+
try:
|
162 |
+
with pipe_lock:
|
163 |
+
mistral_pipe.generate(message, optimized_config, callback)
|
164 |
+
except Exception as e:
|
165 |
+
error[0] = str(e)
|
166 |
+
finally:
|
167 |
+
completion_event.set()
|
168 |
+
|
169 |
+
generation_executor.submit(generate)
|
170 |
+
|
171 |
+
accumulated = []
|
172 |
+
token_count = 0
|
173 |
+
last_gc = time.time()
|
174 |
+
|
175 |
+
while not completion_event.is_set() or not response_queue.empty():
|
176 |
+
if error[0]:
|
177 |
+
yield f"Error: {error[0]}"
|
178 |
+
print(f"Stream answer time: {time.time() - start_time:.2f} seconds")
|
179 |
+
return
|
180 |
+
|
181 |
+
try:
|
182 |
+
token_batch = response_queue.get_nowait()
|
183 |
+
accumulated.append(token_batch)
|
184 |
+
token_count += len(token_batch)
|
185 |
+
|
186 |
+
# Periodic garbage collection
|
187 |
+
if time.time() - last_gc > 2.0: # Every 2 seconds
|
188 |
+
gc.collect()
|
189 |
+
last_gc = time.time()
|
190 |
+
|
191 |
+
yield "".join(accumulated)
|
192 |
+
except Empty:
|
193 |
+
continue
|
194 |
+
|
195 |
+
print(f"Generated {token_count} tokens in {time.time() - start_time:.2f} seconds "
|
196 |
+
f"({token_count/(time.time() - start_time):.2f} tokens/sec)")
|
197 |
+
yield "".join(accumulated)
|
198 |
+
|
199 |
+
def run_chat(message: str, history: list, include_images: bool, max_tokens: int, num_images: int):
|
200 |
+
start_time = time.time()
|
201 |
+
final_text = ""
|
202 |
+
|
203 |
+
# Create a placeholder for the streaming response
|
204 |
+
history.append((message, "", []))
|
205 |
+
rendered_history = render_history(history)
|
206 |
+
yield rendered_history, gr.update(value="", interactive=False)
|
207 |
+
|
208 |
+
# Stream tokens and update chatbot in real-time
|
209 |
+
for output in stream_answer(message, max_tokens, include_images):
|
210 |
+
final_text = output
|
211 |
+
# Update only the last response in history
|
212 |
+
updated_history = history[:-1] + [(message, final_text, [])]
|
213 |
+
rendered_history = render_history(updated_history)
|
214 |
+
yield rendered_history, gr.update(value="", interactive=False)
|
215 |
+
|
216 |
+
images = []
|
217 |
+
if include_images:
|
218 |
+
images = fetch_images(message, num_images)
|
219 |
+
|
220 |
+
# Update history with final response and images
|
221 |
+
history[-1] = (message, final_text, images)
|
222 |
+
if len(history) > MAX_HISTORY_TURNS:
|
223 |
+
history = history[-MAX_HISTORY_TURNS:]
|
224 |
+
|
225 |
+
rendered_history = render_history(history)
|
226 |
+
print(f"Total chat time: {time.time() - start_time:.2f} seconds")
|
227 |
+
yield rendered_history, gr.update(value="", interactive=True)
|
228 |
+
|
229 |
+
def render_history(history):
|
230 |
+
start_time = time.time()
|
231 |
+
rendered = []
|
232 |
+
for user_msg, bot_msg, image_links in history:
|
233 |
+
text = bot_msg
|
234 |
+
if image_links:
|
235 |
+
images_html = "".join(
|
236 |
+
f"<img src='{url}' class='chat-image' onclick='showImage(\"{url}\")' />"
|
237 |
+
for url in image_links
|
238 |
+
)
|
239 |
+
text += f"<br><br><b>📸 Related Visuals:</b><br><div style='display: flex; flex-wrap: wrap;'>{images_html}</div>"
|
240 |
+
rendered.append((user_msg, text))
|
241 |
+
|
242 |
+
return rendered
|
243 |
+
|
244 |
+
with gr.Blocks(css="""
|
245 |
+
.processing {
|
246 |
+
animation: pulse 1.5s infinite;
|
247 |
+
color: #4a5568;
|
248 |
+
padding: 10px;
|
249 |
+
border-radius: 5px;
|
250 |
+
text-align: center;
|
251 |
+
margin: 10px 0;
|
252 |
+
}
|
253 |
+
@keyframes pulse {
|
254 |
+
0%, 100% { opacity: 1; }
|
255 |
+
50% { opacity: 0.5; }
|
256 |
+
}
|
257 |
+
.chat-image {
|
258 |
+
cursor: pointer;
|
259 |
+
transition: transform 0.2s;
|
260 |
+
max-height: 100px;
|
261 |
+
margin: 4px;
|
262 |
+
border-radius: 8px;
|
263 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
264 |
+
}
|
265 |
+
.chat-image:hover {
|
266 |
+
transform: scale(1.05);
|
267 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
268 |
+
}
|
269 |
+
.modal {
|
270 |
+
position: fixed;
|
271 |
+
top: 0;
|
272 |
+
left: 0;
|
273 |
+
width: 100%;
|
274 |
+
height: 100%;
|
275 |
+
background: rgba(0,0,0,0.8);
|
276 |
+
display: none;
|
277 |
+
z-index: 1000;
|
278 |
+
cursor: zoom-out;
|
279 |
+
}
|
280 |
+
.modal-content {
|
281 |
+
position: absolute;
|
282 |
+
top: 50%;
|
283 |
+
left: 50%;
|
284 |
+
transform: translate(-50%, -50%);
|
285 |
+
max-width: 90%;
|
286 |
+
max-height: 90%;
|
287 |
+
background: white;
|
288 |
+
padding: 10px;
|
289 |
+
border-radius: 12px;
|
290 |
+
}
|
291 |
+
.modal-img {
|
292 |
+
width: auto;
|
293 |
+
height: auto;
|
294 |
+
max-width: 100%;
|
295 |
+
max-height: 100%;
|
296 |
+
border-radius: 8px;
|
297 |
+
}
|
298 |
+
.chat-container {
|
299 |
+
border: 1px solid #e5e7eb;
|
300 |
+
border-radius: 12px;
|
301 |
+
padding: 20px;
|
302 |
+
margin-bottom: 20px;
|
303 |
+
}
|
304 |
+
.slider-container {
|
305 |
+
margin-top: 20px;
|
306 |
+
padding: 15px;
|
307 |
+
border-radius: 10px;
|
308 |
+
background-color: #f8f9fa;
|
309 |
+
}
|
310 |
+
.slider-label {
|
311 |
+
font-weight: bold;
|
312 |
+
margin-bottom: 5px;
|
313 |
+
}
|
314 |
+
.system-info {
|
315 |
+
background-color: #7B9BDB;
|
316 |
+
padding: 15px;
|
317 |
+
border-radius: 8px;
|
318 |
+
margin: 15px 0;
|
319 |
+
border-left: 4px solid #1890ff;
|
320 |
+
}
|
321 |
+
.typing-indicator {
|
322 |
+
display: inline-block;
|
323 |
+
position: relative;
|
324 |
+
width: 40px;
|
325 |
+
height: 20px;
|
326 |
+
}
|
327 |
+
.typing-dot {
|
328 |
+
display: inline-block;
|
329 |
+
width: 6px;
|
330 |
+
height: 6px;
|
331 |
+
border-radius: 50%;
|
332 |
+
background-color: #4a5568;
|
333 |
+
position: absolute;
|
334 |
+
animation: typing 1.4s infinite ease-in-out;
|
335 |
+
}
|
336 |
+
.typing-dot:nth-child(1) {
|
337 |
+
left: 0;
|
338 |
+
animation-delay: 0s;
|
339 |
+
}
|
340 |
+
.typing-dot:nth-child(2) {
|
341 |
+
left: 12px;
|
342 |
+
animation-delay: 0.2s;
|
343 |
+
}
|
344 |
+
.typing-dot:nth-child(3) {
|
345 |
+
left: 24px;
|
346 |
+
animation-delay: 0.4s;
|
347 |
+
}
|
348 |
+
@keyframes typing {
|
349 |
+
0%, 60%, 100% { transform: translateY(0); }
|
350 |
+
30% { transform: translateY(-5px); }
|
351 |
+
}
|
352 |
+
""") as demo:
|
353 |
+
gr.Markdown("# 🤖 EDU CHAT BY PHANINDRA REDDY K")
|
354 |
+
|
355 |
+
# System info banner
|
356 |
+
gr.HTML("""
|
357 |
+
<div class="system-info">
|
358 |
+
<strong>Performance Optimized for High-RAM Systems</strong>
|
359 |
+
|
360 |
+
<ul>
|
361 |
+
|
362 |
+
<li>Adaptive resource allocation based on request type</li>
|
363 |
+
|
364 |
+
</ul>
|
365 |
+
</div>
|
366 |
+
""")
|
367 |
+
|
368 |
+
modal_html = """
|
369 |
+
<div class="modal" id="imageModal" onclick="this.style.display='none'">
|
370 |
+
<div class="modal-content">
|
371 |
+
<img class="modal-img" id="expandedImg">
|
372 |
+
</div>
|
373 |
+
</div>
|
374 |
+
<script>
|
375 |
+
function showImage(url) {
|
376 |
+
document.getElementById('expandedImg').src = url;
|
377 |
+
document.getElementById('imageModal').style.display = 'block';
|
378 |
+
}
|
379 |
+
</script>
|
380 |
+
"""
|
381 |
+
gr.HTML(modal_html)
|
382 |
+
|
383 |
+
state = gr.State([])
|
384 |
+
|
385 |
+
with gr.Column(scale=2, elem_classes="chat-container"):
|
386 |
+
chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False)
|
387 |
+
|
388 |
+
with gr.Column(scale=1):
|
389 |
+
gr.Markdown("### 💬 Ask Your Question")
|
390 |
+
|
391 |
+
with gr.Row():
|
392 |
+
user_input = gr.Textbox(
|
393 |
+
placeholder="Type your question here...",
|
394 |
+
label="",
|
395 |
+
container=False,
|
396 |
+
elem_id="question-input"
|
397 |
+
)
|
398 |
+
include_images = gr.Checkbox(
|
399 |
+
label="Include Visuals",
|
400 |
+
value=True,
|
401 |
+
container=False,
|
402 |
+
elem_id="image-checkbox"
|
403 |
+
)
|
404 |
+
|
405 |
+
# Add the sliders container
|
406 |
+
with gr.Column(elem_classes="slider-container"):
|
407 |
+
gr.Markdown("### ⚙️ Generation Settings")
|
408 |
+
|
409 |
+
with gr.Row():
|
410 |
+
max_tokens = gr.Slider(
|
411 |
+
minimum=10,
|
412 |
+
maximum=MAX_TOKENS_LIMIT, # Increased to 1000
|
413 |
+
value=DEFAULT_MAX_TOKENS,
|
414 |
+
step=10,
|
415 |
+
label="Response Length (Tokens)",
|
416 |
+
info=f"Max: {MAX_TOKENS_LIMIT} tokens (for detailed explanations)",
|
417 |
+
elem_classes="slider-label"
|
418 |
+
)
|
419 |
+
|
420 |
+
# Conditionally visible image slider row
|
421 |
+
with gr.Row(visible=True) as image_slider_row:
|
422 |
+
num_images = gr.Slider(
|
423 |
+
minimum=0,
|
424 |
+
maximum=5,
|
425 |
+
value=DEFAULT_NUM_IMAGES,
|
426 |
+
step=1,
|
427 |
+
label="Number of Images",
|
428 |
+
info="Set to 0 to disable images",
|
429 |
+
elem_classes="slider-label"
|
430 |
+
)
|
431 |
+
|
432 |
+
with gr.Row():
|
433 |
+
submit_btn = gr.Button("Send Text", variant="primary")
|
434 |
+
mic_btn = gr.Button("Transcribe Voice", variant="secondary")
|
435 |
+
mic = gr.Audio(
|
436 |
+
sources=["microphone"],
|
437 |
+
type="numpy",
|
438 |
+
label="Voice Input",
|
439 |
+
show_label=False,
|
440 |
+
elem_id="voice-input"
|
441 |
+
)
|
442 |
+
|
443 |
+
processing = gr.HTML("""
|
444 |
+
<div id="processing" style="display: none;">
|
445 |
+
<div class="processing">🔮 Processing your request...</div>
|
446 |
+
</div>
|
447 |
+
""")
|
448 |
+
|
449 |
+
# Toggle image slider visibility based on checkbox
|
450 |
+
def toggle_image_slider(include_visuals):
|
451 |
+
return gr.update(visible=include_visuals)
|
452 |
+
|
453 |
+
include_images.change(
|
454 |
+
fn=toggle_image_slider,
|
455 |
+
inputs=include_images,
|
456 |
+
outputs=image_slider_row
|
457 |
+
)
|
458 |
+
|
459 |
+
def toggle_processing():
|
460 |
+
return gr.update(visible=True), gr.update(interactive=False)
|
461 |
+
|
462 |
+
def hide_processing():
|
463 |
+
return gr.update(visible=False), gr.update(interactive=True)
|
464 |
+
|
465 |
+
# Update the submit_btn click handler to include streaming
|
466 |
+
submit_btn.click(
|
467 |
+
fn=toggle_processing,
|
468 |
+
outputs=[processing, submit_btn]
|
469 |
+
).then(
|
470 |
+
fn=lambda: (gr.update(visible=True), gr.update(interactive=False)),
|
471 |
+
outputs=[processing, submit_btn]
|
472 |
+
).then(
|
473 |
+
fn=run_chat,
|
474 |
+
inputs=[user_input, state, include_images, max_tokens, num_images],
|
475 |
+
outputs=[chatbot, user_input]
|
476 |
+
).then(
|
477 |
+
fn=lambda: (gr.update(visible=False), gr.update(interactive=True)),
|
478 |
+
outputs=[processing, submit_btn]
|
479 |
+
)
|
480 |
+
|
481 |
+
# Voice transcription remains the same
|
482 |
+
mic_btn.click(
|
483 |
+
fn=toggle_processing,
|
484 |
+
outputs=[processing, mic_btn]
|
485 |
+
).then(
|
486 |
+
fn=transcribe,
|
487 |
+
inputs=mic,
|
488 |
+
outputs=user_input
|
489 |
+
).then(
|
490 |
+
fn=hide_processing,
|
491 |
+
outputs=[processing, mic_btn]
|
492 |
+
)
|
493 |
+
|
494 |
+
if __name__ == "__main__":
|
495 |
+
demo.launch(share=True, debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.26.0
|
2 |
+
openvino-genai>=1.0.0
|
3 |
+
librosa>=0.10.0
|
4 |
+
numpy>=1.24.0
|
5 |
+
scipy>=1.10.0
|
6 |
+
huggingface_hub>=0.21.4
|
7 |
+
google-api-python-client
|
8 |
+
|
9 |
+
py-cpuinfo>=8.0.0
|