from DistilBERT import model_DB | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') | |
def sentiment_analysis_DB(input): | |
encoded_input = tokenizer(text, return_tensors='pt').to(device) | |
model.to(device) | |
ids = | |
mask = | |
token_type_ids = | |
output = | |