perman2011's picture
Create app.py
a42610b
raw
history blame
441 Bytes
from DistilBERT import model_DB
import streamlit as st
from transformers import AutoTokenizer, AutoModel
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
def sentiment_analysis_DB(input):
encoded_input = tokenizer(text, return_tensors='pt').to(device)
model.to(device)
ids =
mask =
token_type_ids =
output =