File size: 441 Bytes
a42610b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
from DistilBERT import model_DB
import streamlit as st
from transformers import AutoTokenizer, AutoModel
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
def sentiment_analysis_DB(input):
encoded_input = tokenizer(text, return_tensors='pt').to(device)
model.to(device)
ids =
mask =
token_type_ids =
output =
|