Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
from tensorflow import keras | |
from keras.layers import * | |
import keras_nlp | |
import math | |
import json | |
from transformers import AutoTokenizer | |
from tokenizers import AddedToken | |
# Config | |
input_size = 512 | |
embed_dim = 128 | |
# Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained('google/t5-v1_1-base') | |
tokenizer.add_tokens(AddedToken("\n", normalized=False)) | |
tokenizer.add_tokens(AddedToken("<s>", normalized=False)) | |
vocab_size = len(tokenizer.get_vocab().keys()) | |
print("vocab_size:", vocab_size) | |
print("pad token id:", tokenizer.pad_token) | |
# Masked Accuracy Metric | |
def masked_accuracy(y_true, y_pred, padding_token=tokenizer.pad_token_id): | |
y_true = tf.cast(y_true, tf.int32) | |
y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32) | |
mask = tf.cast(tf.not_equal(y_true, padding_token), tf.float32) | |
matches = tf.cast(tf.equal(y_true, y_pred), tf.float32) | |
accuracy = tf.reduce_sum(matches * mask) / tf.reduce_sum(mask) | |
return accuracy | |
# Embedding Layer | |
class SharedEmbedding(tf.keras.layers.Layer): | |
def __init__(self, vocab_size, embed_dim, **kwargs): | |
super(SharedEmbedding, self).__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.embed_dim = embed_dim | |
def build(self, input_shape): | |
self.shared_weights = self.add_weight( | |
shape=(self.vocab_size, self.embed_dim), | |
initializer='random_normal', | |
trainable=True, | |
name='shared_weights' | |
) | |
super(SharedEmbedding, self).build(input_shape) | |
def call(self, inputs, mode='embedding', temp=0.1): | |
if mode == 'embedding': | |
return tf.nn.embedding_lookup(self.shared_weights, inputs) | |
elif mode == 'classify': | |
sw = tf.nn.l2_normalize(self.shared_weights, axis=-1) | |
return tf.nn.softmax(tf.matmul(inputs, sw, transpose_b=True)/temp, axis=-1) | |
# Attention Layer | |
class Attention(keras.layers.Layer): | |
def __init__(self, **kwargs): | |
super(Attention, self).__init__(**kwargs) | |
def build(self, input_shape): | |
self.embed_dim = input_shape[-1] | |
self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf")) | |
self.range_do = -tf.range(input_shape[-2])-1 | |
self.range_undo = tf.range(input_shape[-2])+1 | |
self.Q = self.add_weight(name='kernelQ', | |
shape=(input_shape[-1], input_shape[-1]), | |
initializer='uniform', | |
trainable=True) | |
self.K = self.add_weight(name='kernelK', | |
shape=(input_shape[-1], input_shape[-1]), | |
initializer='uniform', | |
trainable=True) | |
self.V = self.add_weight(name='kernelV', | |
shape=(input_shape[-1], input_shape[-1]), | |
initializer='uniform', | |
trainable=True) | |
super(Attention, self).build(input_shape) | |
def roll_embeddings(self, tensor, shift_values): | |
batch_size, time_size, embed_dim = tensor.shape | |
if batch_size is None: return tensor | |
shift_matrix = tf.reshape(shift_values, (1, -1, 1)) | |
shift_matrix = tf.tile(shift_matrix, [batch_size, 1, embed_dim]) | |
indices = tf.range(embed_dim) | |
indices_matrix = tf.tile(indices, [batch_size * time_size]) | |
indices_matrix = tf.reshape(indices_matrix, (batch_size, time_size, embed_dim)) | |
new_indices = (indices_matrix + shift_matrix) % embed_dim | |
rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2) | |
return rolled_tensor | |
def call(self, x, pos): | |
q = x @ self.Q | |
k = x @ self.K | |
v = x @ self.V | |
atti = tf.matmul(q, k, transpose_b=True) | |
attp = tf.matmul(q, pos, transpose_b=True) | |
attp = self.roll_embeddings(attp, self.range_do) | |
att = atti + attp | |
att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1) | |
outi = att @ v | |
attp = self.roll_embeddings(att, self.range_undo) | |
outp = attp @ pos | |
out = outi + outp | |
return out | |
# Encoder | |
inputs = Input(shape=(input_size, ), dtype=tf.int32) | |
emb_layer = SharedEmbedding(vocab_size, embed_dim) | |
pos_layer = keras_nlp.layers.PositionEmbedding(input_size) | |
x = LayerNormalization()(emb_layer(inputs, mode="embedding")) | |
pos = pos_layer(x) | |
b = 6 | |
for _ in range(b): | |
x += (2*b)**-0.5 * LayerNormalization()(Attention()(x, pos)) | |
x += (2*b)**-0.5 * LayerNormalization()(Dense(embed_dim, activation="gelu")(x)) | |
x = tf.nn.l2_normalize(x, axis=-1) | |
for _ in range(b): | |
x1 = Dense(embed_dim, activation="gelu")(x) | |
x1 = Dense(embed_dim, activation="gelu")(x1) | |
x += b**-0.5 * LayerNormalization()(x1) | |
x = tf.nn.l2_normalize(x, axis=-1) | |
x = emb_layer(x, mode="classify", temp=0.1) | |
model = keras.Model(inputs=inputs, outputs=x) | |
model.compile( | |
loss=keras.losses.SparseCategoricalCrossentropy(ignore_class=tokenizer.pad_token_id), | |
optimizer=keras.optimizers.AdamW(learning_rate=0.001), | |
metrics=[masked_accuracy, keras_nlp.metrics.Perplexity(mask_token_id=tokenizer.pad_token_id)], | |
) | |
# Import Model | |
model.load_weights("rpc.keras") | |
encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[52].output) | |
encoder.summary() | |
# Vectorize Function | |
def vectorize_texts(all_texts): | |
batch_size = 128 | |
vects = [] | |
for i in range(0, len(all_texts), batch_size): | |
texts = all_texts[i:i+batch_size] | |
toks = [text + ([tokenizer.pad_token_id] * (input_size - len(text))) for text in texts] | |
if len(toks) > 0: | |
toks = tf.constant(toks, shape=(len(toks), input_size)) | |
vect = encoder.predict(toks, verbose=0) | |
for v, t in zip(vect, texts): | |
vects.append(v[:len(t), :]) | |
return tf.concat(vects, axis=0).numpy() | |
# Import Database and All Toks | |
index = None | |
all_toks = None | |
def load_index(index_path="/dev/shm/rpc-vecdb/index"): | |
global index | |
global all_toks | |
#import ngtpy | |
#index = ngtpy.Index(index_path, read_only=True) | |
import faiss | |
index = faiss.read_index(index_path + "/index.faiss") | |
with open(index_path + "/all_toks.json", "r") as f: | |
all_toks = json.loads(f.read()) | |
# Generate Function | |
def generate(text, use_rpc=True, max_tokens=128): | |
enc_text = tokenizer.encode(text, add_special_tokens=False) | |
i = 0 | |
while i < max_tokens and tok != vocab_size - 2: | |
enc_text = enc_text[-input_size:] | |
if use_rpc: | |
xq = vectorize_texts([enc_text])[-1] | |
#_id, _ = index.search(xq, size=1, epsilon=2)[0] | |
D, I = index.search(xq.reshape((1, -1)), 1) | |
_id = I[0][0] | |
if all_toks[_id] in carry_toks: | |
tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0] | |
if all_toks[tmp] in enc_text: tok = tmp | |
else: tok = all_toks[_id] | |
else: tok = all_toks[_id] | |
else: | |
ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text)) | |
ins = tf.constant(ins, shape=(1, input_size)) | |
res = model.predict(ins, verbose=0)[0][len(enc_text)-1] | |
tok = tf.argmax(res, axis=-1).numpy().tolist() | |
enc_text += [tok] | |
response = tokenizer.decode(enc_text) | |
yield response |