File size: 7,623 Bytes
0be59b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e069448
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import tensorflow as tf
from tensorflow import keras
from keras.layers import *
import keras_nlp

import math
import json
from transformers import AutoTokenizer
from tokenizers import AddedToken


# Config
input_size  = 512
embed_dim   = 128


# Tokenizer
tokenizer = AutoTokenizer.from_pretrained('google/t5-v1_1-base')
tokenizer.add_tokens(AddedToken("\n", normalized=False))
tokenizer.add_tokens(AddedToken("<s>", normalized=False))
vocab_size = len(tokenizer.get_vocab().keys())
print("vocab_size:", vocab_size)
print("pad token id:", tokenizer.pad_token)


# Masked Accuracy Metric
def masked_accuracy(y_true, y_pred, padding_token=tokenizer.pad_token_id):
    y_true = tf.cast(y_true, tf.int32)
    y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32)
    mask = tf.cast(tf.not_equal(y_true, padding_token), tf.float32)
    matches = tf.cast(tf.equal(y_true, y_pred), tf.float32)
    accuracy = tf.reduce_sum(matches * mask) / tf.reduce_sum(mask)
    return accuracy


# Embedding Layer
class SharedEmbedding(tf.keras.layers.Layer):
    def __init__(self, vocab_size, embed_dim, **kwargs):
        super(SharedEmbedding, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim
        
    def build(self, input_shape):
        self.shared_weights = self.add_weight(
            shape=(self.vocab_size, self.embed_dim),
            initializer='random_normal',
            trainable=True,
            name='shared_weights'
        )
        super(SharedEmbedding, self).build(input_shape)
    
    def call(self, inputs, mode='embedding', temp=0.1):
        if mode == 'embedding':
            return tf.nn.embedding_lookup(self.shared_weights, inputs)
        elif mode == 'classify':
            sw = tf.nn.l2_normalize(self.shared_weights, axis=-1)
            return tf.nn.softmax(tf.matmul(inputs, sw, transpose_b=True)/temp, axis=-1)
        

# Attention Layer
class Attention(keras.layers.Layer):
    def __init__(self, **kwargs):
        super(Attention, self).__init__(**kwargs)

    def build(self, input_shape):
        self.embed_dim = input_shape[-1]
        self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf"))
        self.range_do = -tf.range(input_shape[-2])-1
        self.range_undo = tf.range(input_shape[-2])+1
        self.Q = self.add_weight(name='kernelQ',
                                      shape=(input_shape[-1], input_shape[-1]),
                                      initializer='uniform',
                                      trainable=True)
        self.K = self.add_weight(name='kernelK',
                                      shape=(input_shape[-1], input_shape[-1]),
                                      initializer='uniform',
                                      trainable=True)
        self.V = self.add_weight(name='kernelV',
                                      shape=(input_shape[-1], input_shape[-1]),
                                      initializer='uniform',
                                      trainable=True)
        super(Attention, self).build(input_shape)

    def roll_embeddings(self, tensor, shift_values):
        batch_size, time_size, embed_dim = tensor.shape
        if batch_size is None: return tensor
        shift_matrix   = tf.reshape(shift_values, (1, -1, 1))
        shift_matrix   = tf.tile(shift_matrix, [batch_size, 1, embed_dim])
        indices        = tf.range(embed_dim)
        indices_matrix = tf.tile(indices, [batch_size * time_size])
        indices_matrix = tf.reshape(indices_matrix, (batch_size, time_size, embed_dim))
        new_indices    = (indices_matrix + shift_matrix) % embed_dim     
        rolled_tensor  = tf.gather(tensor, new_indices, batch_dims=2)
        return rolled_tensor

    def call(self, x, pos):
        q    = x @ self.Q
        k    = x @ self.K
        v    = x @ self.V
        atti = tf.matmul(q, k,   transpose_b=True)
        attp = tf.matmul(q, pos, transpose_b=True)
        attp = self.roll_embeddings(attp, self.range_do)
        att  = atti + attp
        att  = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1)
        outi = att @ v
        attp = self.roll_embeddings(att, self.range_undo)
        outp = attp @ pos
        out  = outi + outp
        return out
    

# Encoder
inputs = Input(shape=(input_size, ), dtype=tf.int32)
emb_layer = SharedEmbedding(vocab_size, embed_dim)
pos_layer = keras_nlp.layers.PositionEmbedding(input_size)

x = LayerNormalization()(emb_layer(inputs, mode="embedding"))
pos = pos_layer(x)

b = 6
for _ in range(b):
    x += (2*b)**-0.5 * LayerNormalization()(Attention()(x, pos))
    x += (2*b)**-0.5 * LayerNormalization()(Dense(embed_dim, activation="gelu")(x))
x = tf.nn.l2_normalize(x, axis=-1)

for _ in range(b):
    x1 = Dense(embed_dim, activation="gelu")(x)
    x1 = Dense(embed_dim, activation="gelu")(x1)
    x += b**-0.5 * LayerNormalization()(x1)
x = tf.nn.l2_normalize(x, axis=-1)

x = emb_layer(x, mode="classify", temp=0.1)

model = keras.Model(inputs=inputs, outputs=x)
model.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(ignore_class=tokenizer.pad_token_id),
    optimizer=keras.optimizers.AdamW(learning_rate=0.001),
    metrics=[masked_accuracy, keras_nlp.metrics.Perplexity(mask_token_id=tokenizer.pad_token_id)],
)


# Import Model
model.load_weights("rpc.keras")
encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[52].output)
encoder.summary()


# Vectorize Function
def vectorize_texts(all_texts):
    batch_size = 128
    vects = []
    for i in range(0, len(all_texts), batch_size):
        texts = all_texts[i:i+batch_size]
        toks = [text + ([tokenizer.pad_token_id] * (input_size - len(text))) for text in texts]
        if len(toks) > 0:
            toks = tf.constant(toks, shape=(len(toks), input_size))
            vect = encoder.predict(toks, verbose=0)
            for v, t in zip(vect, texts):
                vects.append(v[:len(t), :])
    return tf.concat(vects, axis=0).numpy()


# Import Database and All Toks
index = None
all_toks = None
def load_index(index_path="/dev/shm/rpc-vecdb/index"):
    global index
    global all_toks
    #import ngtpy
    #index = ngtpy.Index(index_path, read_only=True)
    import faiss
    index = faiss.read_index(index_path + "/index.faiss")
    with open(index_path + "/all_toks.json", "r") as f:
        all_toks = json.loads(f.read())


# Generate Function
def generate(text, use_rpc=True, max_tokens=128):
    enc_text = tokenizer.encode(text, add_special_tokens=False)
    
    i = 0
    while i < max_tokens and tok != vocab_size - 2:

        enc_text = enc_text[-input_size:]
        if use_rpc:
            xq = vectorize_texts([enc_text])[-1]
            #_id, _ = index.search(xq, size=1, epsilon=2)[0]
            D, I = index.search(xq.reshape((1, -1)), 1)
            _id = I[0][0]
            if all_toks[_id] in carry_toks:
                tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0]
                if all_toks[tmp] in enc_text: tok = tmp
                else: tok = all_toks[_id]
            else: tok = all_toks[_id]
        else:
            ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text))
            ins = tf.constant(ins, shape=(1, input_size))
            res = model.predict(ins, verbose=0)[0][len(enc_text)-1]
            tok = tf.argmax(res, axis=-1).numpy().tolist()
        
        enc_text += [tok]
        response = tokenizer.decode(enc_text)
    
        yield response