GalaxyAnnotator / app.py
pawipa's picture
first diry commit for checking dependencies.
40b16f2
raw
history blame
12.3 kB
import gradio as gr
from astropy.io import fits
import matplotlib.pyplot as plt
import numpy as np
import io
from PIL import Image
import astropy.units as u
from astropy.wcs import WCS
from astropy.coordinates import SkyCoord
from astropy import coordinates as coord
from astropy.wcs.utils import skycoord_to_pixel
from astroquery.simbad import Simbad
import pandas as pd
import matplotlib.patches as patches
# Increase the limit (set to a value larger than the pixel count of your image)
Image.MAX_IMAGE_PIXELS = None
plt.style.use('dark_background')
# Initialize globals
global_dataframe = pd.DataFrame()
global_data = None
global_header = None
def show_csv(file):
"""
Displays the uploaded CSV file as a table.
"""
global global_dataframe
try:
# Read the CSV file into a pandas DataFrame
df = pd.read_csv(file.name, index_col=0)
global_dataframe = df # Store the dataframe globally for filtering
# Extract unique types from the "type" column
if "TYPE" in df.columns:
unique_types = df["TYPE"].unique().tolist()
return df, gr.CheckboxGroup(label="Select Catalogue", choices=unique_types, value=unique_types, interactive=True)
else:
return "Error: CSV does not contain a 'type' column.", None
except Exception as e:
return f"Error: {str(e)}", None
# Define a function to be called when the button is clicked
def query_update_table():
"""
Displays the uploaded CSV file as a table.
"""
global global_dataframe, global_header, global_data
try:
# Read the CSV file into a pandas DataFrame
#df = pd.read_csv('dataframe.csv', index_col=0)
Simbad.TIMEOUT = 120
# Define the specific coordinates
wcs = WCS(global_header).dropaxis(2)
center_ra = global_header['CRVAL1']
center_dec = global_header['CRVAL2']
target_coord = SkyCoord(ra=center_ra, dec=center_dec, unit=(u.deg, u.deg), frame='icrs')
print(center_ra, center_dec)
# define the search radius
radius_deg = max([abs(global_header['CDELT1']),abs(global_header['CDELT2'])])*max([global_header['NAXIS1'],global_header['NAXIS2']])
radius_deg *= 1
# Set up the query criteria
if target_coord.dec.deg > 0:
custom_query = f"region(CIRCLE, {target_coord.ra.deg} +{target_coord.dec.deg}, {radius_deg}d)"
else:
custom_query = f"region(CIRCLE, {target_coord.ra.deg} {target_coord.dec.deg}, {radius_deg}d)"
print(f'Query={custom_query}')
result_table = Simbad.query_criteria(custom_query, otype='galaxy')
print("received feedback from simbad!!!")
print(result_table)
df = result_table.to_pandas().set_index('main_id')
print(df.columns)
df['Pixel_Position'] = [skycoord_to_pixel(SkyCoord(v[0],v[1], unit=(u.deg, u.deg), frame='icrs'), wcs) for v in df[['ra','dec']].values]
print(df['Pixel_Position'])
df['px'] = df['Pixel_Position'].apply(lambda x: int(x[0]))
df['py'] = df['Pixel_Position'].apply(lambda x: int(x[1]))
mask = (df.px>0)&(df.px< global_data.shape[1])&(df.py>0)&(df.py<global_data.shape[0])
print(df)
df = df[mask]
df = df.reset_index()
df['TYPE'] = df['main_id'].apply(lambda x: x.split(' ')[0].split('+')[0])
df = df.sort_values(by=['px', 'py'], ascending=[True, True]).reset_index(drop=True)
print(df)
df = df.iloc[:200]
global_dataframe = df # Store the dataframe globally for filtering
# Extract unique types from the "type" column
if "TYPE" in df.columns:
unique_types = df["TYPE"].unique().tolist()
return df, gr.CheckboxGroup(label="Select Catalogue", choices=unique_types, value=unique_types, interactive=True)
else:
return "Error: CSV does not contain a 'type' column.", None
except Exception as e:
return f"Error: {str(e)}", None
def load_fits_image(file, type_checkboxes, title, axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method):
"""
Displays the data from the uploaded FITS file.
"""
global global_header, global_data
# Open the FITS file
hdu = fits.open(file)
data = hdu[0].data # Access the primary HDU data
data = np.swapaxes(np.swapaxes(data,0,2),0,1)#.astype(np.float)
#data = (data*255).astype(np.uint8) # Access the primary HDU data
global_data = data
# get fits header
header = hdu[0].header
global_header = header
#selected_types, title, selected_axis_options, num_rows, patch_size, patch_color, sort_method
return update_images_and_tables(type_checkboxes, title, axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method)
def update_images_and_tables(selected_types, title, selected_axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method):
global global_dataframe, global_header, global_data
if selected_types and not global_dataframe.empty:
# Filter the dataframe based on the selected types
filtered_df = global_dataframe[global_dataframe["TYPE"].isin(selected_types)]
mask = (filtered_df.px-patch_size//2 > 0)&(filtered_df.px+patch_size//2 < global_data.shape[1])&(filtered_df.py-patch_size//2 > 0)&(filtered_df.py+patch_size//2 < global_data.shape[0])
filtered_df = filtered_df[mask]
else:
filtered_df = None
if not filtered_df is None:
# Sort the dataframe based on the sorting method
if sort_method == "by Catalogue":
filtered_df = filtered_df.sort_values(by=['px', 'py'], ascending=[True, True])
filtered_df = filtered_df.sort_values(by='TYPE', ascending=True).reset_index(drop=True)
elif sort_method == "by x":
filtered_df = filtered_df.sort_values(by=['px', 'py'], ascending=[True, True]).reset_index(drop=True)
elif sort_method == "by y":
filtered_df = filtered_df.sort_values(by=['py', 'px'], ascending=[True, True]).reset_index(drop=True)
try:
wcs = WCS(global_header).dropaxis(2)
ratio = global_data.shape[0]/global_data.shape[1]
# Plot WCS
fig = plt.figure(figsize=(ratio*scale,scale))
ax = fig.add_subplot(projection=wcs, label='overlays')
ax.imshow(global_data, origin='lower')
#if not filtered_df is None:
# filtered_df.plot.scatter(x='px', y='py', ax=ax, s=15, c=patch_color)
if "with Grid" in selected_axis_options:
ax.coords.grid(True, color='white', ls='-', alpha=.5)
if "with Axis Annotation" in selected_axis_options:
ax.coords[0].set_axislabel('Right Ascension (J2000)', fontsize=fontsize+2)
ax.coords[1].set_axislabel('Declination (J2000)', fontsize=fontsize+2)
else:
ax.axis('off')
plt.title(title, fontsize=fontsize+4)
if not filtered_df is None:
all_patches = []
for i,row in filtered_df.iterrows():
rect = patches.Rectangle((row.px-patch_size//2, row.py-patch_size//2), patch_size, patch_size, alpha=alpha, linewidth=linewidth, edgecolor=patch_color, facecolor='none')
ax.add_patch(rect)
ax.text(row.px,row.py+patch_size//2,str(i+1),
ha='center',va='bottom',color=patch_color,fontsize=fontsize)
patch = global_data[row.py-patch_size//2:row.py+patch_size//2,row.px-patch_size//2:row.px+patch_size//2]
all_patches.append(patch)
plt.tight_layout()
# Convert the plot to an image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=.1, dpi=200)
plt.close(fig)
buf.seek(0)
# Convert buffer to PIL Image
image = Image.open(buf)
if not filtered_df is None:
m = num_rows
n = int(np.ceil(len(filtered_df)/m))
second_scale=max([1,scale//3])
fig, axarr = plt.subplots(n,m,figsize=(m*second_scale,n*second_scale))
for i, row in filtered_df.iterrows():
ax = axarr[i//m,i%m]
ax.imshow(all_patches[i][::-1])
ax.set_title(row.main_id, fontsize=fontsize-2)
ax.set_xticks([])
ax.set_yticks([])
ax.text(2,2,str(i+1)[:30],ha='left',va='top',fontsize=fontsize+6)
for i in np.arange(len(all_patches),m*n):
ax = axarr[i//m,i%m]
ax.axis('off')
plt.tight_layout()
# Convert the plot to an image
second_buf = io.BytesIO()
plt.savefig(second_buf, format='png', bbox_inches='tight', pad_inches=.1, dpi=200)
plt.close(fig)
second_buf.seek(0)
# Convert buffer to PIL Image
patches_image = Image.open(second_buf)
return filtered_df, image, patches_image
else:
return filtered_df, image, None
except Exception as e:
return f"Error: {str(e)}"
# Gradio interface
with gr.Blocks(css=".btn-green {background-color: green; color: white;}") as gui:
gr.Markdown("# What's in my image?")
# Options Area
with gr.Row() as options_gui:
num_rows = gr.Number(label="Number of Rows", value=16, minimum=2, precision=0, interactive=True)
title = gr.Textbox(label="Image Title", value="Custom Title", interactive=True)
patch_size = gr.Slider(label="Patch Size", minimum=16, maximum=128, step=8, value=32,
interactive=True)
fontsize = gr.Slider(label="Fontsize", minimum=6, maximum=26, step=1, value=10,
interactive=True)
alpha = gr.Slider(label="Alpha", minimum=0., maximum=1., step=.1, value=1.,
interactive=True)
linewidth = gr.Slider(label="Linewidth", minimum=1, maximum=4, step=1, value=1,
interactive=True)
scale = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8,
interactive=True)
patch_color = gr.ColorPicker(label="Patch Color", value="#FFFFFF", interactive=True)
sort_method = gr.Dropdown(label="Sorting Method", choices=["by Catalogue", "by x", "by y"], value="by Catalogue", interactive=True)
axis_options = gr.CheckboxGroup(
label="Select options",
choices=["with Grid", "with Axis Annotation"],
value=["with Grid", "with Axis Annotation"], # Preselected values
interactive=True # Makes it interactive
)
gr.Markdown("Upload a plate solved `.fits` file (32 bit) to display its content.")
file_input = gr.File(label="Upload .fits File", type="filepath")
#file_input_csv = gr.File(label="Upload .csv File")
greet_button = gr.Button("Query Simbad for Galaxies") # Create the button
fits_image = gr.Image(label="Input Image", type="pil")
type_checkboxes = gr.CheckboxGroup(label="Select Catalogue")
patches_image = gr.Image(label="Patches Image", type="pil")
csv_table = gr.DataFrame(label="CSV Table")
track_options = [type_checkboxes, title, axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method]
file_input.change(load_fits_image,
inputs=[file_input] + track_options,
outputs=[csv_table,fits_image,patches_image])
for option_i in track_options:
option_i.change(update_images_and_tables,
inputs=track_options,
outputs=[csv_table,fits_image,patches_image])
# Display CSV table
#file_input_csv.change(show_csv,
# inputs=file_input_csv,
# outputs=[csv_table, type_checkboxes])
greet_button.click(query_update_table, inputs=None, outputs=[csv_table, type_checkboxes])
# Update the selected checkboxes change
type_checkboxes.change(update_images_and_tables,
inputs=track_options,
outputs=[csv_table,fits_image,patches_image])
gui.launch(debug=True)