Spaces:
Sleeping
Sleeping
File size: 12,348 Bytes
0d917aa 40b16f2 0d917aa 40b16f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
from astropy.io import fits
import matplotlib.pyplot as plt
import numpy as np
import io
from PIL import Image
import astropy.units as u
from astropy.wcs import WCS
from astropy.coordinates import SkyCoord
from astropy import coordinates as coord
from astropy.wcs.utils import skycoord_to_pixel
from astroquery.simbad import Simbad
import pandas as pd
import matplotlib.patches as patches
# Increase the limit (set to a value larger than the pixel count of your image)
Image.MAX_IMAGE_PIXELS = None
plt.style.use('dark_background')
# Initialize globals
global_dataframe = pd.DataFrame()
global_data = None
global_header = None
def show_csv(file):
"""
Displays the uploaded CSV file as a table.
"""
global global_dataframe
try:
# Read the CSV file into a pandas DataFrame
df = pd.read_csv(file.name, index_col=0)
global_dataframe = df # Store the dataframe globally for filtering
# Extract unique types from the "type" column
if "TYPE" in df.columns:
unique_types = df["TYPE"].unique().tolist()
return df, gr.CheckboxGroup(label="Select Catalogue", choices=unique_types, value=unique_types, interactive=True)
else:
return "Error: CSV does not contain a 'type' column.", None
except Exception as e:
return f"Error: {str(e)}", None
# Define a function to be called when the button is clicked
def query_update_table():
"""
Displays the uploaded CSV file as a table.
"""
global global_dataframe, global_header, global_data
try:
# Read the CSV file into a pandas DataFrame
#df = pd.read_csv('dataframe.csv', index_col=0)
Simbad.TIMEOUT = 120
# Define the specific coordinates
wcs = WCS(global_header).dropaxis(2)
center_ra = global_header['CRVAL1']
center_dec = global_header['CRVAL2']
target_coord = SkyCoord(ra=center_ra, dec=center_dec, unit=(u.deg, u.deg), frame='icrs')
print(center_ra, center_dec)
# define the search radius
radius_deg = max([abs(global_header['CDELT1']),abs(global_header['CDELT2'])])*max([global_header['NAXIS1'],global_header['NAXIS2']])
radius_deg *= 1
# Set up the query criteria
if target_coord.dec.deg > 0:
custom_query = f"region(CIRCLE, {target_coord.ra.deg} +{target_coord.dec.deg}, {radius_deg}d)"
else:
custom_query = f"region(CIRCLE, {target_coord.ra.deg} {target_coord.dec.deg}, {radius_deg}d)"
print(f'Query={custom_query}')
result_table = Simbad.query_criteria(custom_query, otype='galaxy')
print("received feedback from simbad!!!")
print(result_table)
df = result_table.to_pandas().set_index('main_id')
print(df.columns)
df['Pixel_Position'] = [skycoord_to_pixel(SkyCoord(v[0],v[1], unit=(u.deg, u.deg), frame='icrs'), wcs) for v in df[['ra','dec']].values]
print(df['Pixel_Position'])
df['px'] = df['Pixel_Position'].apply(lambda x: int(x[0]))
df['py'] = df['Pixel_Position'].apply(lambda x: int(x[1]))
mask = (df.px>0)&(df.px< global_data.shape[1])&(df.py>0)&(df.py<global_data.shape[0])
print(df)
df = df[mask]
df = df.reset_index()
df['TYPE'] = df['main_id'].apply(lambda x: x.split(' ')[0].split('+')[0])
df = df.sort_values(by=['px', 'py'], ascending=[True, True]).reset_index(drop=True)
print(df)
df = df.iloc[:200]
global_dataframe = df # Store the dataframe globally for filtering
# Extract unique types from the "type" column
if "TYPE" in df.columns:
unique_types = df["TYPE"].unique().tolist()
return df, gr.CheckboxGroup(label="Select Catalogue", choices=unique_types, value=unique_types, interactive=True)
else:
return "Error: CSV does not contain a 'type' column.", None
except Exception as e:
return f"Error: {str(e)}", None
def load_fits_image(file, type_checkboxes, title, axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method):
"""
Displays the data from the uploaded FITS file.
"""
global global_header, global_data
# Open the FITS file
hdu = fits.open(file)
data = hdu[0].data # Access the primary HDU data
data = np.swapaxes(np.swapaxes(data,0,2),0,1)#.astype(np.float)
#data = (data*255).astype(np.uint8) # Access the primary HDU data
global_data = data
# get fits header
header = hdu[0].header
global_header = header
#selected_types, title, selected_axis_options, num_rows, patch_size, patch_color, sort_method
return update_images_and_tables(type_checkboxes, title, axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method)
def update_images_and_tables(selected_types, title, selected_axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method):
global global_dataframe, global_header, global_data
if selected_types and not global_dataframe.empty:
# Filter the dataframe based on the selected types
filtered_df = global_dataframe[global_dataframe["TYPE"].isin(selected_types)]
mask = (filtered_df.px-patch_size//2 > 0)&(filtered_df.px+patch_size//2 < global_data.shape[1])&(filtered_df.py-patch_size//2 > 0)&(filtered_df.py+patch_size//2 < global_data.shape[0])
filtered_df = filtered_df[mask]
else:
filtered_df = None
if not filtered_df is None:
# Sort the dataframe based on the sorting method
if sort_method == "by Catalogue":
filtered_df = filtered_df.sort_values(by=['px', 'py'], ascending=[True, True])
filtered_df = filtered_df.sort_values(by='TYPE', ascending=True).reset_index(drop=True)
elif sort_method == "by x":
filtered_df = filtered_df.sort_values(by=['px', 'py'], ascending=[True, True]).reset_index(drop=True)
elif sort_method == "by y":
filtered_df = filtered_df.sort_values(by=['py', 'px'], ascending=[True, True]).reset_index(drop=True)
try:
wcs = WCS(global_header).dropaxis(2)
ratio = global_data.shape[0]/global_data.shape[1]
# Plot WCS
fig = plt.figure(figsize=(ratio*scale,scale))
ax = fig.add_subplot(projection=wcs, label='overlays')
ax.imshow(global_data, origin='lower')
#if not filtered_df is None:
# filtered_df.plot.scatter(x='px', y='py', ax=ax, s=15, c=patch_color)
if "with Grid" in selected_axis_options:
ax.coords.grid(True, color='white', ls='-', alpha=.5)
if "with Axis Annotation" in selected_axis_options:
ax.coords[0].set_axislabel('Right Ascension (J2000)', fontsize=fontsize+2)
ax.coords[1].set_axislabel('Declination (J2000)', fontsize=fontsize+2)
else:
ax.axis('off')
plt.title(title, fontsize=fontsize+4)
if not filtered_df is None:
all_patches = []
for i,row in filtered_df.iterrows():
rect = patches.Rectangle((row.px-patch_size//2, row.py-patch_size//2), patch_size, patch_size, alpha=alpha, linewidth=linewidth, edgecolor=patch_color, facecolor='none')
ax.add_patch(rect)
ax.text(row.px,row.py+patch_size//2,str(i+1),
ha='center',va='bottom',color=patch_color,fontsize=fontsize)
patch = global_data[row.py-patch_size//2:row.py+patch_size//2,row.px-patch_size//2:row.px+patch_size//2]
all_patches.append(patch)
plt.tight_layout()
# Convert the plot to an image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=.1, dpi=200)
plt.close(fig)
buf.seek(0)
# Convert buffer to PIL Image
image = Image.open(buf)
if not filtered_df is None:
m = num_rows
n = int(np.ceil(len(filtered_df)/m))
second_scale=max([1,scale//3])
fig, axarr = plt.subplots(n,m,figsize=(m*second_scale,n*second_scale))
for i, row in filtered_df.iterrows():
ax = axarr[i//m,i%m]
ax.imshow(all_patches[i][::-1])
ax.set_title(row.main_id, fontsize=fontsize-2)
ax.set_xticks([])
ax.set_yticks([])
ax.text(2,2,str(i+1)[:30],ha='left',va='top',fontsize=fontsize+6)
for i in np.arange(len(all_patches),m*n):
ax = axarr[i//m,i%m]
ax.axis('off')
plt.tight_layout()
# Convert the plot to an image
second_buf = io.BytesIO()
plt.savefig(second_buf, format='png', bbox_inches='tight', pad_inches=.1, dpi=200)
plt.close(fig)
second_buf.seek(0)
# Convert buffer to PIL Image
patches_image = Image.open(second_buf)
return filtered_df, image, patches_image
else:
return filtered_df, image, None
except Exception as e:
return f"Error: {str(e)}"
# Gradio interface
with gr.Blocks(css=".btn-green {background-color: green; color: white;}") as gui:
gr.Markdown("# What's in my image?")
# Options Area
with gr.Row() as options_gui:
num_rows = gr.Number(label="Number of Rows", value=16, minimum=2, precision=0, interactive=True)
title = gr.Textbox(label="Image Title", value="Custom Title", interactive=True)
patch_size = gr.Slider(label="Patch Size", minimum=16, maximum=128, step=8, value=32,
interactive=True)
fontsize = gr.Slider(label="Fontsize", minimum=6, maximum=26, step=1, value=10,
interactive=True)
alpha = gr.Slider(label="Alpha", minimum=0., maximum=1., step=.1, value=1.,
interactive=True)
linewidth = gr.Slider(label="Linewidth", minimum=1, maximum=4, step=1, value=1,
interactive=True)
scale = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8,
interactive=True)
patch_color = gr.ColorPicker(label="Patch Color", value="#FFFFFF", interactive=True)
sort_method = gr.Dropdown(label="Sorting Method", choices=["by Catalogue", "by x", "by y"], value="by Catalogue", interactive=True)
axis_options = gr.CheckboxGroup(
label="Select options",
choices=["with Grid", "with Axis Annotation"],
value=["with Grid", "with Axis Annotation"], # Preselected values
interactive=True # Makes it interactive
)
gr.Markdown("Upload a plate solved `.fits` file (32 bit) to display its content.")
file_input = gr.File(label="Upload .fits File", type="filepath")
#file_input_csv = gr.File(label="Upload .csv File")
greet_button = gr.Button("Query Simbad for Galaxies") # Create the button
fits_image = gr.Image(label="Input Image", type="pil")
type_checkboxes = gr.CheckboxGroup(label="Select Catalogue")
patches_image = gr.Image(label="Patches Image", type="pil")
csv_table = gr.DataFrame(label="CSV Table")
track_options = [type_checkboxes, title, axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method]
file_input.change(load_fits_image,
inputs=[file_input] + track_options,
outputs=[csv_table,fits_image,patches_image])
for option_i in track_options:
option_i.change(update_images_and_tables,
inputs=track_options,
outputs=[csv_table,fits_image,patches_image])
# Display CSV table
#file_input_csv.change(show_csv,
# inputs=file_input_csv,
# outputs=[csv_table, type_checkboxes])
greet_button.click(query_update_table, inputs=None, outputs=[csv_table, type_checkboxes])
# Update the selected checkboxes change
type_checkboxes.change(update_images_and_tables,
inputs=track_options,
outputs=[csv_table,fits_image,patches_image])
gui.launch(debug=True) |