Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler | |
import torch | |
from transformers import AutoModelForObjectDetection, AutoImageProcessor | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Your diffusion model | |
# Load your main diffusion pipeline | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# Load ADetailer model (from Hugging Face) | |
adetailer_model_id = "Bingsu/adetailer" | |
adetailer_model = AutoModelForObjectDetection.from_pretrained(adetailer_model_id) | |
adetailer_processor = AutoImageProcessor.from_pretrained(adetailer_model_id) | |
def fix_eyes_with_adetailer(image): | |
# Convert image to format for ADetailer | |
pixel_values = adetailer_processor(images=image, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
# Run ADetailer on the image | |
with torch.no_grad(): | |
outputs = adetailer_model(pixel_values=pixel_values) | |
# Post-process the outputs and apply the fixes (if any) | |
corrected_image = image # Placeholder for the actual post-processing | |
# Apply fixes based on the detection and correction model outputs | |
# This step requires actual ADetailer implementation details for correcting eyes. | |
return corrected_image # Return the corrected image | |
#[uncomment to use ZeroGPU] | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# Apply ADetailer to fix eyes after generating the image | |
corrected_image = fix_eyes_with_adetailer(image) | |
return corrected_image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css="""#col-container {margin: 0 auto; max-width: 640px;}""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Text-to-Image Gradio Template | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, #Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, #Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, #Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=2, #Replace with defaults that work for your model | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt] | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.queue().launch() | |