Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import DiffusionPipeline, DPMSolverSDEScheduler | |
| import torch | |
| from transformers import AutoModelForObjectDetection, AutoImageProcessor | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Your diffusion model | |
| # Load your main diffusion pipeline | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True) | |
| pipe = pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # Load ADetailer model (from Hugging Face) | |
| adetailer_model_id = "Bingsu/adetailer" | |
| adetailer_model = AutoModelForObjectDetection.from_pretrained(adetailer_model_id) | |
| adetailer_processor = AutoImageProcessor.from_pretrained(adetailer_model_id) | |
| def fix_eyes_with_adetailer(image): | |
| # Convert image to format for ADetailer | |
| pixel_values = adetailer_processor(images=image, return_tensors="pt").pixel_values | |
| pixel_values = pixel_values.to(device) | |
| # Run ADetailer on the image | |
| with torch.no_grad(): | |
| outputs = adetailer_model(pixel_values=pixel_values) | |
| # Post-process the outputs and apply the fixes (if any) | |
| corrected_image = image # Placeholder for the actual post-processing | |
| # Apply fixes based on the detection and correction model outputs | |
| # This step requires actual ADetailer implementation details for correcting eyes. | |
| return corrected_image # Return the corrected image | |
| #[uncomment to use ZeroGPU] | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator | |
| ).images[0] | |
| # Apply ADetailer to fix eyes after generating the image | |
| corrected_image = fix_eyes_with_adetailer(image) | |
| return corrected_image, seed | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css="""#col-container {margin: 0 auto; max-width: 640px;}""" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Text-to-Image Gradio Template | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, #Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, #Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, #Replace with defaults that work for your model | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=2, #Replace with defaults that work for your model | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[prompt] | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.queue().launch() | |