rainbow_media_x / app.py
panelforge's picture
Update app.py
ce6ba71 verified
raw
history blame
5.5 kB
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
import torch
from transformers import AutoModelForObjectDetection, AutoImageProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Your diffusion model
# Load your main diffusion pipeline
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Load ADetailer model (from Hugging Face)
adetailer_model_id = "Bingsu/adetailer"
adetailer_model = AutoModelForObjectDetection.from_pretrained(adetailer_model_id)
adetailer_processor = AutoImageProcessor.from_pretrained(adetailer_model_id)
def fix_eyes_with_adetailer(image):
# Convert image to format for ADetailer
pixel_values = adetailer_processor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# Run ADetailer on the image
with torch.no_grad():
outputs = adetailer_model(pixel_values=pixel_values)
# Post-process the outputs and apply the fixes (if any)
corrected_image = image # Placeholder for the actual post-processing
# Apply fixes based on the detection and correction model outputs
# This step requires actual ADetailer implementation details for correcting eyes.
return corrected_image # Return the corrected image
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Apply ADetailer to fix eyes after generating the image
corrected_image = fix_eyes_with_adetailer(image)
return corrected_image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""#col-container {margin: 0 auto; max-width: 640px;}"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, #Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, #Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0, #Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2, #Replace with defaults that work for your model
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.queue().launch()