Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces # [uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler | |
import torch | |
from tags import tag_options_1, tag_options_2, tag_options_3, tag_options_4 # Import tags here | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace to the model you would like to use | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# [uncomment to use ZeroGPU] | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, tag_selection_3, tag_selection_4, use_tags, progress=gr.Progress(track_tqdm=True)): | |
# Determine final prompt | |
if use_tags: | |
selected_tags_1 = [tag_options_1[tag] for tag in tag_selection_1 if tag in tag_options_1] | |
selected_tags_2 = [tag_options_2[tag] for tag in tag_selection_2 if tag in tag_options_2] | |
selected_tags_3 = [tag_options_3[tag] for tag in tag_selection_3 if tag in tag_options_3] | |
selected_tags_4 = [tag_options_4[tag] for tag in tag_selection_4 if tag in tag_options_4] | |
tags_text = ', '.join(selected_tags_1 + selected_tags_2 + selected_tags_3 + selected_tags_4) | |
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}' | |
else: | |
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}' | |
# Concatenate user-provided negative prompt with additional restrictions | |
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark" | |
full_negative_prompt = f"{additional_negatives}, {negative_prompt}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# Generate the image with the final prompts | |
image = pipe( | |
prompt=final_prompt, | |
negative_prompt=full_negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# Return image, seed, and the used prompts | |
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}" | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
#run-button { | |
width: 100%; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("""# Text-to-Image Gradio Template""") | |
# Display result image at the top | |
result = gr.Image(label="Result", show_label=False) | |
# Add a textbox to display the prompts used for generation | |
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False) | |
# Tabbed interface to select either Prompt or Tags | |
with gr.Tabs() as tabs: | |
with gr.TabItem("Prompt Input"): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
use_tags = gr.State(False) | |
with gr.TabItem("Tag Selection"): | |
# Separate each tag section vertically | |
with gr.Column(): | |
tag_selection_1 = gr.CheckboxGroup(choices=list(tag_options_1.keys()), label="Select Tags (Style)") | |
with gr.Column(): | |
tag_selection_2 = gr.CheckboxGroup(choices=list(tag_options_2.keys()), label="Select Tags (Theme)") | |
with gr.Column(): | |
tag_selection_3 = gr.CheckboxGroup(choices=list(tag_options_3.keys()), label="Select Tags (Other)") | |
with gr.Column(): | |
tag_selection_4 = gr.CheckboxGroup(choices=list(tag_options_4.keys()), label="Select Tags (Additional)") | |
use_tags = gr.State(True) | |
# Full-width "Run" button | |
run_button = gr.Button("Run", scale=0, elem_id="run-button") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=35, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt] | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, tag_selection_3, tag_selection_4, use_tags], | |
outputs=[result, seed, prompt_info] # Include prompt_info in the outputs | |
) | |
demo.queue().launch() | |