rainbow_media_x / app.py
panelforge's picture
Update app.py
a533474 verified
raw
history blame
6.53 kB
import gradio as gr
import numpy as np
import random
import spaces # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
import torch
from tags import tag_options_1, tag_options_2, tag_options_3, tag_options_4 # Import tags here
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU # [uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, tag_selection_3, tag_selection_4, use_tags, progress=gr.Progress(track_tqdm=True)):
# Determine final prompt
if use_tags:
selected_tags_1 = [tag_options_1[tag] for tag in tag_selection_1 if tag in tag_options_1]
selected_tags_2 = [tag_options_2[tag] for tag in tag_selection_2 if tag in tag_options_2]
selected_tags_3 = [tag_options_3[tag] for tag in tag_selection_3 if tag in tag_options_3]
selected_tags_4 = [tag_options_4[tag] for tag in tag_selection_4 if tag in tag_options_4]
tags_text = ', '.join(selected_tags_1 + selected_tags_2 + selected_tags_3 + selected_tags_4)
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
else:
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}'
# Concatenate user-provided negative prompt with additional restrictions
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate the image with the final prompts
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Return image, seed, and the used prompts
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
#run-button {
width: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# Text-to-Image Gradio Template""")
# Display result image at the top
result = gr.Image(label="Result", show_label=False)
# Add a textbox to display the prompts used for generation
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
# Tabbed interface to select either Prompt or Tags
with gr.Tabs() as tabs:
with gr.TabItem("Prompt Input"):
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
use_tags = gr.State(False)
with gr.TabItem("Tag Selection"):
# Separate each tag section vertically
with gr.Column():
tag_selection_1 = gr.CheckboxGroup(choices=list(tag_options_1.keys()), label="Select Tags (Style)")
with gr.Column():
tag_selection_2 = gr.CheckboxGroup(choices=list(tag_options_2.keys()), label="Select Tags (Theme)")
with gr.Column():
tag_selection_3 = gr.CheckboxGroup(choices=list(tag_options_3.keys()), label="Select Tags (Other)")
with gr.Column():
tag_selection_4 = gr.CheckboxGroup(choices=list(tag_options_4.keys()), label="Select Tags (Additional)")
use_tags = gr.State(True)
# Full-width "Run" button
run_button = gr.Button("Run", scale=0, elem_id="run-button")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=35,
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, tag_selection_3, tag_selection_4, use_tags],
outputs=[result, seed, prompt_info] # Include prompt_info in the outputs
)
demo.queue().launch()