File size: 6,532 Bytes
630d1c8
 
 
6d482fb
cce056a
630d1c8
d9f7c6d
630d1c8
 
6d482fb
0f8e37d
 
 
 
 
630d1c8
0f8e37d
630d1c8
 
 
 
 
6d482fb
e2501d8
6d482fb
90d2a01
7819529
 
 
e2501d8
 
 
7819529
 
 
8bb4602
90d2a01
 
 
 
630d1c8
 
6d482fb
630d1c8
6d482fb
90d2a01
630d1c8
6d482fb
90d2a01
6d482fb
 
 
 
 
 
 
d16d2c8
90d2a01
 
630d1c8
 
 
 
 
 
 
6d482fb
0f8e37d
 
 
 
d16d2c8
 
 
0f8e37d
630d1c8
 
6d482fb
630d1c8
a533474
6d482fb
03c18e7
 
 
d16d2c8
 
 
7819529
 
 
 
 
 
 
 
 
 
03c18e7
6d482fb
7819529
03c18e7
 
7819529
03c18e7
7819529
e2501d8
a533474
e2501d8
a533474
 
03c18e7
6d482fb
03c18e7
d16d2c8
630d1c8
 
8bb4602
 
 
 
353cbbe
8bb4602
6d482fb
8bb4602
 
 
 
 
 
 
6d482fb
630d1c8
6d482fb
630d1c8
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
630d1c8
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
a533474
 
 
 
7819529
8bb4602
 
6d482fb
e2501d8
d16d2c8
8bb4602
ce6ba71
6d482fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import numpy as np
import random
import spaces  # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
import torch
from tags import tag_options_1, tag_options_2, tag_options_3, tag_options_4  # Import tags here

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU  # [uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, tag_selection_3, tag_selection_4, use_tags, progress=gr.Progress(track_tqdm=True)):

    # Determine final prompt
    if use_tags:
        selected_tags_1 = [tag_options_1[tag] for tag in tag_selection_1 if tag in tag_options_1]
        selected_tags_2 = [tag_options_2[tag] for tag in tag_selection_2 if tag in tag_options_2]
        selected_tags_3 = [tag_options_3[tag] for tag in tag_selection_3 if tag in tag_options_3]
        selected_tags_4 = [tag_options_4[tag] for tag in tag_selection_4 if tag in tag_options_4]
        tags_text = ', '.join(selected_tags_1 + selected_tags_2 + selected_tags_3 + selected_tags_4)
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
    else:
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}'

    # Concatenate user-provided negative prompt with additional restrictions
    additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
    full_negative_prompt = f"{additional_negatives}, {negative_prompt}"

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # Generate the image with the final prompts
    image = pipe(
        prompt=final_prompt,
        negative_prompt=full_negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    # Return image, seed, and the used prompts
    return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
#run-button {
    width: 100%;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""# Text-to-Image Gradio Template""")

        # Display result image at the top
        result = gr.Image(label="Result", show_label=False)

        # Add a textbox to display the prompts used for generation
        prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)

        # Tabbed interface to select either Prompt or Tags
        with gr.Tabs() as tabs:
            with gr.TabItem("Prompt Input"):
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                use_tags = gr.State(False)

            with gr.TabItem("Tag Selection"):
                # Separate each tag section vertically
                with gr.Column():
                    tag_selection_1 = gr.CheckboxGroup(choices=list(tag_options_1.keys()), label="Select Tags (Style)")
                with gr.Column():
                    tag_selection_2 = gr.CheckboxGroup(choices=list(tag_options_2.keys()), label="Select Tags (Theme)")
                with gr.Column():
                    tag_selection_3 = gr.CheckboxGroup(choices=list(tag_options_3.keys()), label="Select Tags (Other)")
                with gr.Column():
                    tag_selection_4 = gr.CheckboxGroup(choices=list(tag_options_4.keys()), label="Select Tags (Additional)")

                use_tags = gr.State(True)

        # Full-width "Run" button
        run_button = gr.Button("Run", scale=0, elem_id="run-button")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=35,
                )

        gr.Examples(
            examples=examples,
            inputs=[prompt]
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, tag_selection_3, tag_selection_4, use_tags],
        outputs=[result, seed, prompt_info]  # Include prompt_info in the outputs
    )

demo.queue().launch()