Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,532 Bytes
630d1c8 6d482fb cce056a 630d1c8 d9f7c6d 630d1c8 6d482fb 0f8e37d 630d1c8 0f8e37d 630d1c8 6d482fb e2501d8 6d482fb 90d2a01 7819529 e2501d8 7819529 8bb4602 90d2a01 630d1c8 6d482fb 630d1c8 6d482fb 90d2a01 630d1c8 6d482fb 90d2a01 6d482fb d16d2c8 90d2a01 630d1c8 6d482fb 0f8e37d d16d2c8 0f8e37d 630d1c8 6d482fb 630d1c8 a533474 6d482fb 03c18e7 d16d2c8 7819529 03c18e7 6d482fb 7819529 03c18e7 7819529 03c18e7 7819529 e2501d8 a533474 e2501d8 a533474 03c18e7 6d482fb 03c18e7 d16d2c8 630d1c8 8bb4602 353cbbe 8bb4602 6d482fb 8bb4602 6d482fb 630d1c8 6d482fb 630d1c8 8bb4602 03c18e7 8bb4602 6d482fb 8bb4602 03c18e7 8bb4602 6d482fb 630d1c8 8bb4602 03c18e7 8bb4602 6d482fb 8bb4602 03c18e7 8bb4602 6d482fb a533474 7819529 8bb4602 6d482fb e2501d8 d16d2c8 8bb4602 ce6ba71 6d482fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import numpy as np
import random
import spaces # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
import torch
from tags import tag_options_1, tag_options_2, tag_options_3, tag_options_4 # Import tags here
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU # [uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, tag_selection_3, tag_selection_4, use_tags, progress=gr.Progress(track_tqdm=True)):
# Determine final prompt
if use_tags:
selected_tags_1 = [tag_options_1[tag] for tag in tag_selection_1 if tag in tag_options_1]
selected_tags_2 = [tag_options_2[tag] for tag in tag_selection_2 if tag in tag_options_2]
selected_tags_3 = [tag_options_3[tag] for tag in tag_selection_3 if tag in tag_options_3]
selected_tags_4 = [tag_options_4[tag] for tag in tag_selection_4 if tag in tag_options_4]
tags_text = ', '.join(selected_tags_1 + selected_tags_2 + selected_tags_3 + selected_tags_4)
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
else:
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}'
# Concatenate user-provided negative prompt with additional restrictions
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate the image with the final prompts
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Return image, seed, and the used prompts
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
#run-button {
width: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# Text-to-Image Gradio Template""")
# Display result image at the top
result = gr.Image(label="Result", show_label=False)
# Add a textbox to display the prompts used for generation
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
# Tabbed interface to select either Prompt or Tags
with gr.Tabs() as tabs:
with gr.TabItem("Prompt Input"):
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
use_tags = gr.State(False)
with gr.TabItem("Tag Selection"):
# Separate each tag section vertically
with gr.Column():
tag_selection_1 = gr.CheckboxGroup(choices=list(tag_options_1.keys()), label="Select Tags (Style)")
with gr.Column():
tag_selection_2 = gr.CheckboxGroup(choices=list(tag_options_2.keys()), label="Select Tags (Theme)")
with gr.Column():
tag_selection_3 = gr.CheckboxGroup(choices=list(tag_options_3.keys()), label="Select Tags (Other)")
with gr.Column():
tag_selection_4 = gr.CheckboxGroup(choices=list(tag_options_4.keys()), label="Select Tags (Additional)")
use_tags = gr.State(True)
# Full-width "Run" button
run_button = gr.Button("Run", scale=0, elem_id="run-button")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=35,
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, tag_selection_3, tag_selection_4, use_tags],
outputs=[result, seed, prompt_info] # Include prompt_info in the outputs
)
demo.queue().launch()
|