Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,334 Bytes
630d1c8 decc71b 630d1c8 e7003c8 630d1c8 02074a8 0f8e37d 630d1c8 0f8e37d 1b50d93 630d1c8 e7003c8 decc71b 1b50d93 e7003c8 1b50d93 e7003c8 8bb4602 1b50d93 90d2a01 630d1c8 1b50d93 6d482fb 630d1c8 6d482fb 90d2a01 6d482fb 1b50d93 630d1c8 e7003c8 6d482fb 0f8e37d 630d1c8 1b50d93 6d482fb 03c18e7 d16d2c8 58d31c6 7819529 1b50d93 6d482fb 1b50d93 f54a073 1b50d93 f54a073 1b50d93 00e6a86 1b50d93 f54a073 1b50d93 630d1c8 1b50d93 630d1c8 1b50d93 6d482fb 630d1c8 1b50d93 6d482fb 630d1c8 1b50d93 7819529 1b50d93 02074a8 66d1fcc a3ecd5b 66d1fcc 58d31c6 02074a8 ce6ba71 6d482fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
import importlib # to import tag modules dynamically
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace with your desired model
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Function to load tags dynamically based on the selected tab
def load_tags(active_tab):
if active_tab == "Gay":
tags_module = importlib.import_module('tags_gay') # dynamically import the tags_gay module
elif active_tab == "Straight":
tags_module = importlib.import_module('tags_straight') # dynamically import the tags_straight module
elif active_tab == "Lesbian":
tags_module = importlib.import_module('tags_lesbian') # dynamically import the tags_lesbian module
else:
raise ValueError(f"Unknown tab: {active_tab}")
return tags_module
@spaces.GPU
def infer(
prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags, selected_hair_style_tags,
selected_position_tags, selected_fetish_tags, selected_location_tags, selected_camera_tags, selected_atmosphere_tags,
active_tab, progress=gr.Progress(track_tqdm=True)
):
# Dynamically load the correct tags module based on active tab
tags_module = load_tags(active_tab)
# Now use the tags from the loaded module
participant_tags = tags_module.participant_tags
tribe_tags = tags_module.tribe_tags
role_tags = tags_module.role_tags
skin_tone_tags = tags_module.skin_tone_tags
body_type_tags = tags_module.body_type_tags
tattoo_tags = tags_module.tattoo_tags
piercing_tags = tags_module.piercing_tags
expression_tags = tags_module.expression_tags
eye_tags = tags_module.eye_tags
hair_style_tags = tags_module.hair_style_tags
position_tags = tags_module.position_tags
fetish_tags = tags_module.fetish_tags
location_tags = tags_module.location_tags
camera_tags = tags_module.camera_tags
atmosphere_tags = tags_module.atmosphere_tags
# Handle the active tab and generate the prompt accordingly
tag_list = (
[participant_tags[tag] for tag in selected_participant_tags] +
[tribe_tags[tag] for tag in selected_tribe_tags] +
[role_tags[tag] for tag in selected_role_tags] +
[skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
[body_type_tags[tag] for tag in selected_body_type_tags] +
[tattoo_tags[tag] for tag in selected_tattoo_tags] +
[piercing_tags[tag] for tag in selected_piercing_tags] +
[expression_tags[tag] for tag in selected_expression_tags] +
[eye_tags[tag] for tag in selected_eye_tags] +
[hair_style_tags[tag] for tag in selected_hair_style_tags] +
[position_tags[tag] for tag in selected_position_tags] +
[fetish_tags[tag] for tag in selected_fetish_tags] +
[location_tags[tag] for tag in selected_location_tags] +
[camera_tags[tag] for tag in selected_camera_tags] +
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
)
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {', '.join(tag_list)}"
# Concatenate additional negative prompts
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image, seed, f"Prompt: {final_prompt}\nNegative Prompt: {full_negative_prompt}"
# CSS for the layout
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Image Generator with Tags and Prompts")
result = gr.Image(label="Result", show_label=False)
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
active_tab = gr.State("Prompt Input")
with gr.Tabs() as tabs:
# Prompt Input Tab
with gr.TabItem("Prompt Input"):
prompt = gr.Textbox(label="Prompt", placeholder="Enter your custom prompt")
tabs.select(lambda: "Prompt Input", inputs=None, outputs=active_tab)
# Straight Tab
with gr.TabItem("Straight"):
selected_participant_tags = gr.CheckboxGroup(choices=[], label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=[], label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=[], label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=[], label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=[], label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=[], label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=[], label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=[], label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=[], label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=[], label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=[], label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=[], label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=[], label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=[], label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=[], label="Atmosphere Tags")
tabs.select(lambda: "Straight", inputs=None, outputs=active_tab)
# Gay Tab
with gr.TabItem("Gay"):
selected_participant_tags = gr.CheckboxGroup(choices=[], label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=[], label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=[], label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=[], label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=[], label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=[], label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=[], label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=[], label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=[], label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=[], label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=[], label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=[], label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=[], label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=[], label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=[], label="Atmosphere Tags")
tabs.select(lambda: "Gay", inputs=None, outputs=active_tab)
# Lesbian Tab
with gr.TabItem("Lesbian"):
selected_participant_tags = gr.CheckboxGroup(choices=[], label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=[], label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=[], label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=[], label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=[], label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=[], label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=[], label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=[], label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=[], label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=[], label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=[], label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=[], label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=[], label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=[], label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=[], label="Atmosphere Tags")
tabs.select(lambda: "Lesbian", inputs=None, outputs=active_tab)
# Advanced Settings
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=7)
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=50, step=1, value=35)
run_button = gr.Button("Run")
run_button.click(
infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
selected_camera_tags, selected_atmosphere_tags, active_tab],
outputs=[result, seed, prompt_info]
)
demo.queue().launch()
|