Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
import spaces #
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
from tags import participant_tags, tribe_tags, role_tags, skin_tone_tags, body_type_tags, tattoo_tags, piercing_tags, expression_tags, eye_tags, hair_style_tags, position_tags, fetish_tags, location_tags, camera_tags, atmosphere_tags
|
@@ -15,25 +15,25 @@ else:
|
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
@spaces.GPU # [uncomment to use ZeroGPU]
|
24 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
25 |
-
selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
|
26 |
-
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
|
27 |
-
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
|
28 |
-
selected_camera_tags, selected_atmosphere_tags, active_tab, progress=gr.Progress(track_tqdm=True)):
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
if active_tab == "Prompt Input":
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
elif active_tab == "Straight" :
|
35 |
-
# Use tags from the "Gay" tab
|
36 |
-
selected_tags = (
|
37 |
[participant_tags[tag] for tag in selected_participant_tags] +
|
38 |
[tribe_tags[tag] for tag in selected_tribe_tags] +
|
39 |
[role_tags[tag] for tag in selected_role_tags] +
|
@@ -50,63 +50,16 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
50 |
[camera_tags[tag] for tag in selected_camera_tags] +
|
51 |
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
|
52 |
)
|
53 |
-
|
54 |
-
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
|
55 |
|
56 |
-
|
57 |
-
# Use tags from the "Gay" tab
|
58 |
-
selected_tags = (
|
59 |
-
[participant_tags[tag] for tag in selected_participant_tags] +
|
60 |
-
[tribe_tags[tag] for tag in selected_tribe_tags] +
|
61 |
-
[role_tags[tag] for tag in selected_role_tags] +
|
62 |
-
[skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
|
63 |
-
[body_type_tags[tag] for tag in selected_body_type_tags] +
|
64 |
-
[tattoo_tags[tag] for tag in selected_tattoo_tags] +
|
65 |
-
[piercing_tags[tag] for tag in selected_piercing_tags] +
|
66 |
-
[expression_tags[tag] for tag in selected_expression_tags] +
|
67 |
-
[eye_tags[tag] for tag in selected_eye_tags] +
|
68 |
-
[hair_style_tags[tag] for tag in selected_hair_style_tags] +
|
69 |
-
[position_tags[tag] for tag in selected_position_tags] +
|
70 |
-
[fetish_tags[tag] for tag in selected_fetish_tags] +
|
71 |
-
[location_tags[tag] for tag in selected_location_tags] +
|
72 |
-
[camera_tags[tag] for tag in selected_camera_tags] +
|
73 |
-
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
|
74 |
-
)
|
75 |
-
tags_text = ', '.join(selected_tags)
|
76 |
-
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
|
77 |
-
|
78 |
-
elif active_tab == "Lesbian" :
|
79 |
-
# Use tags from the "Lesbien" tab
|
80 |
-
selected_tags = (
|
81 |
-
[participant_tags[tag] for tag in selected_participant_tags] +
|
82 |
-
[tribe_tags[tag] for tag in selected_tribe_tags] +
|
83 |
-
[role_tags[tag] for tag in selected_role_tags] +
|
84 |
-
[skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
|
85 |
-
[body_type_tags[tag] for tag in selected_body_type_tags] +
|
86 |
-
[tattoo_tags[tag] for tag in selected_tattoo_tags] +
|
87 |
-
[piercing_tags[tag] for tag in selected_piercing_tags] +
|
88 |
-
[expression_tags[tag] for tag in selected_expression_tags] +
|
89 |
-
[eye_tags[tag] for tag in selected_eye_tags] +
|
90 |
-
[hair_style_tags[tag] for tag in selected_hair_style_tags] +
|
91 |
-
[position_tags[tag] for tag in selected_position_tags] +
|
92 |
-
[fetish_tags[tag] for tag in selected_fetish_tags] +
|
93 |
-
[location_tags[tag] for tag in selected_location_tags] +
|
94 |
-
[camera_tags[tag] for tag in selected_camera_tags] +
|
95 |
-
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
|
96 |
-
)
|
97 |
-
tags_text = ', '.join(selected_tags)
|
98 |
-
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
|
99 |
-
|
100 |
-
# Concatenate user-provided negative prompt with additional restrictions
|
101 |
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
|
102 |
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
|
103 |
|
104 |
if randomize_seed:
|
105 |
seed = random.randint(0, MAX_SEED)
|
|
|
106 |
|
107 |
-
generator = torch.Generator().manual_seed(seed)
|
108 |
-
|
109 |
-
# Generate the image with the final prompts
|
110 |
image = pipe(
|
111 |
prompt=final_prompt,
|
112 |
negative_prompt=full_negative_prompt,
|
@@ -117,54 +70,32 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
117 |
generator=generator
|
118 |
).images[0]
|
119 |
|
120 |
-
|
121 |
-
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"
|
122 |
-
|
123 |
|
124 |
-
examples = [
|
125 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
126 |
-
"An astronaut riding a green horse",
|
127 |
-
"A delicious ceviche cheesecake slice",
|
128 |
-
]
|
129 |
|
130 |
css = """
|
131 |
#col-container {
|
132 |
margin: 0 auto;
|
133 |
max-width: 640px;
|
134 |
}
|
135 |
-
#run-button {
|
136 |
-
width: 100%;
|
137 |
-
}
|
138 |
"""
|
139 |
|
140 |
with gr.Blocks(css=css) as demo:
|
141 |
-
|
142 |
with gr.Column(elem_id="col-container"):
|
143 |
-
gr.Markdown("
|
144 |
|
145 |
-
# Display result image at the top
|
146 |
result = gr.Image(label="Result", show_label=False)
|
147 |
-
|
148 |
-
# Add a textbox to display the prompts used for generation
|
149 |
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
|
150 |
-
|
151 |
-
# State to track active tab
|
152 |
active_tab = gr.State("Prompt Input")
|
153 |
|
154 |
-
# Tabbed interface to select either Prompt or Tags
|
155 |
with gr.Tabs() as tabs:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
max_lines=1,
|
161 |
-
placeholder="Enter your prompt",
|
162 |
-
container=False,
|
163 |
-
)
|
164 |
-
prompt_tab.select(lambda: "Prompt Input", inputs=None, outputs=active_tab)
|
165 |
|
166 |
-
|
167 |
-
|
168 |
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
|
169 |
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
|
170 |
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
|
@@ -180,11 +111,10 @@ with gr.Blocks(css=css) as demo:
|
|
180 |
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
|
181 |
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
|
182 |
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
with gr.TabItem("Gay")
|
187 |
-
# Tag selection checkboxes for each tag group
|
188 |
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
|
189 |
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
|
190 |
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
|
@@ -200,10 +130,10 @@ with gr.Blocks(css=css) as demo:
|
|
200 |
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
|
201 |
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
|
202 |
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
|
203 |
-
|
204 |
|
205 |
-
|
206 |
-
|
207 |
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
|
208 |
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
|
209 |
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
|
@@ -219,68 +149,23 @@ with gr.Blocks(css=css) as demo:
|
|
219 |
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
|
220 |
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
|
221 |
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
|
222 |
-
|
223 |
-
|
224 |
-
# Full-width "Run" button
|
225 |
-
run_button = gr.Button("Run", scale=0, elem_id="run-button")
|
226 |
|
|
|
227 |
with gr.Accordion("Advanced Settings", open=False):
|
228 |
-
negative_prompt = gr.Textbox(
|
229 |
-
|
230 |
-
|
231 |
-
placeholder="Enter a negative prompt",
|
232 |
-
visible=True,
|
233 |
-
)
|
234 |
-
|
235 |
-
seed = gr.Slider(
|
236 |
-
label="Seed",
|
237 |
-
minimum=0,
|
238 |
-
maximum=MAX_SEED,
|
239 |
-
step=1,
|
240 |
-
value=0,
|
241 |
-
)
|
242 |
-
|
243 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
244 |
|
245 |
with gr.Row():
|
246 |
-
width = gr.Slider(
|
247 |
-
|
248 |
-
minimum=256,
|
249 |
-
maximum=MAX_IMAGE_SIZE,
|
250 |
-
step=32,
|
251 |
-
value=1024,
|
252 |
-
)
|
253 |
-
|
254 |
-
height = gr.Slider(
|
255 |
-
label="Height",
|
256 |
-
minimum=256,
|
257 |
-
maximum=MAX_IMAGE_SIZE,
|
258 |
-
step=32,
|
259 |
-
value=1024,
|
260 |
-
)
|
261 |
|
262 |
with gr.Row():
|
263 |
-
guidance_scale = gr.Slider(
|
264 |
-
|
265 |
-
minimum=0.0,
|
266 |
-
maximum=10.0,
|
267 |
-
step=0.1,
|
268 |
-
value=7,
|
269 |
-
)
|
270 |
-
|
271 |
-
num_inference_steps = gr.Slider(
|
272 |
-
label="Number of inference steps",
|
273 |
-
minimum=1,
|
274 |
-
maximum=50,
|
275 |
-
step=1,
|
276 |
-
value=35,
|
277 |
-
)
|
278 |
-
|
279 |
-
gr.Examples(
|
280 |
-
examples=examples,
|
281 |
-
inputs=[prompt]
|
282 |
-
)
|
283 |
|
|
|
284 |
run_button.click(
|
285 |
infer,
|
286 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import spaces # Uncomment if you're using ZeroGPU
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
from tags import participant_tags, tribe_tags, role_tags, skin_tone_tags, body_type_tags, tattoo_tags, piercing_tags, expression_tags, eye_tags, hair_style_tags, position_tags, fetish_tags, location_tags, camera_tags, atmosphere_tags
|
|
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
+
pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
@spaces.GPU # Uncomment if using ZeroGPU
|
25 |
+
def infer(
|
26 |
+
prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
27 |
+
selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
|
28 |
+
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags, selected_hair_style_tags,
|
29 |
+
selected_position_tags, selected_fetish_tags, selected_location_tags, selected_camera_tags, selected_atmosphere_tags,
|
30 |
+
active_tab, progress=gr.Progress(track_tqdm=True)
|
31 |
+
):
|
32 |
+
# Handle the active tab and generate the prompt accordingly
|
33 |
if active_tab == "Prompt Input":
|
34 |
+
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {prompt}"
|
35 |
+
else:
|
36 |
+
tag_list = (
|
|
|
|
|
|
|
37 |
[participant_tags[tag] for tag in selected_participant_tags] +
|
38 |
[tribe_tags[tag] for tag in selected_tribe_tags] +
|
39 |
[role_tags[tag] for tag in selected_role_tags] +
|
|
|
50 |
[camera_tags[tag] for tag in selected_camera_tags] +
|
51 |
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
|
52 |
)
|
53 |
+
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {', '.join(tag_list)}"
|
|
|
54 |
|
55 |
+
# Concatenate additional negative prompts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
|
57 |
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
|
58 |
|
59 |
if randomize_seed:
|
60 |
seed = random.randint(0, MAX_SEED)
|
61 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
62 |
|
|
|
|
|
|
|
63 |
image = pipe(
|
64 |
prompt=final_prompt,
|
65 |
negative_prompt=full_negative_prompt,
|
|
|
70 |
generator=generator
|
71 |
).images[0]
|
72 |
|
73 |
+
return image, seed, f"Prompt: {final_prompt}\nNegative Prompt: {full_negative_prompt}"
|
|
|
|
|
74 |
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
css = """
|
77 |
#col-container {
|
78 |
margin: 0 auto;
|
79 |
max-width: 640px;
|
80 |
}
|
|
|
|
|
|
|
81 |
"""
|
82 |
|
83 |
with gr.Blocks(css=css) as demo:
|
|
|
84 |
with gr.Column(elem_id="col-container"):
|
85 |
+
gr.Markdown("# Image Generator with Tags and Prompts")
|
86 |
|
|
|
87 |
result = gr.Image(label="Result", show_label=False)
|
|
|
|
|
88 |
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
|
|
|
|
|
89 |
active_tab = gr.State("Prompt Input")
|
90 |
|
|
|
91 |
with gr.Tabs() as tabs:
|
92 |
+
# Prompt Input Tab
|
93 |
+
with gr.TabItem("Prompt Input"):
|
94 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your custom prompt")
|
95 |
+
tabs.select(lambda: "Prompt Input", inputs=None, outputs=active_tab)
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
# Straight Tab
|
98 |
+
with gr.TabItem("Straight"):
|
99 |
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
|
100 |
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
|
101 |
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
|
|
|
111 |
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
|
112 |
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
|
113 |
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
|
114 |
+
tabs.select(lambda: "Straight", inputs=None, outputs=active_tab)
|
115 |
+
|
116 |
+
# Gay Tab
|
117 |
+
with gr.TabItem("Gay"):
|
|
|
118 |
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
|
119 |
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
|
120 |
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
|
|
|
130 |
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
|
131 |
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
|
132 |
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
|
133 |
+
tabs.select(lambda: "Gay", inputs=None, outputs=active_tab)
|
134 |
|
135 |
+
# Lesbian Tab
|
136 |
+
with gr.TabItem("Lesbian"):
|
137 |
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
|
138 |
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
|
139 |
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
|
|
|
149 |
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
|
150 |
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
|
151 |
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
|
152 |
+
tabs.select(lambda: "Lesbian", inputs=None, outputs=active_tab)
|
|
|
|
|
|
|
153 |
|
154 |
+
# Advanced Settings
|
155 |
with gr.Accordion("Advanced Settings", open=False):
|
156 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt")
|
157 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
158 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
with gr.Row():
|
161 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
162 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
with gr.Row():
|
165 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=7)
|
166 |
+
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=50, step=1, value=35)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
run_button = gr.Button("Run")
|
169 |
run_button.click(
|
170 |
infer,
|
171 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|