Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,392 Bytes
630d1c8 1b50d93 66d1fcc 630d1c8 a3ecd5b 630d1c8 02074a8 0f8e37d 630d1c8 0f8e37d 1b50d93 630d1c8 6d482fb 1b50d93 66d1fcc 1b50d93 02074a8 a3ecd5b 02074a8 1b50d93 8bb4602 1b50d93 90d2a01 630d1c8 1b50d93 6d482fb 630d1c8 6d482fb 90d2a01 6d482fb 1b50d93 630d1c8 6d482fb 0f8e37d 630d1c8 1b50d93 6d482fb 03c18e7 d16d2c8 58d31c6 7819529 1b50d93 6d482fb 1b50d93 00e6a86 a3ecd5b 00e6a86 1b50d93 00e6a86 a3ecd5b 00e6a86 1b50d93 00e6a86 1b50d93 02074a8 a3ecd5b 02074a8 1b50d93 630d1c8 1b50d93 630d1c8 1b50d93 6d482fb 630d1c8 1b50d93 6d482fb 630d1c8 1b50d93 7819529 1b50d93 02074a8 66d1fcc a3ecd5b 66d1fcc 58d31c6 02074a8 ce6ba71 6d482fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
import numpy as np
import random
import spaces # Uncomment if you're using ZeroGPU
from diffusers import DiffusionPipeline
import torch
from tags import participant_tags, tribe_tags, role_tags, skin_tone_tags, body_type_tags, tattoo_tags, piercing_tags, expression_tags, eye_tags, hair_style_tags, position_tags, fetish_tags, location_tags, camera_tags, atmosphere_tags
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace with your desired model
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU # Uncomment if using ZeroGPU
def infer(
prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags, selected_hair_style_tags,
selected_position_tags, selected_fetish_tags, selected_location_tags, selected_camera_tags, selected_atmosphere_tags,
active_tab, progress=gr.Progress(track_tqdm=True)
):
# Handle the active tab and generate the prompt accordingly
if active_tab == "Prompt Input":
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {prompt}"
else:
tag_list = (
[participant_tags[tag] for tag in selected_participant_tags] +
[tribe_tags[tag] for tag in selected_tribe_tags] +
[role_tags[tag] for tag in selected_role_tags] +
[skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
[body_type_tags[tag] for tag in selected_body_type_tags] +
[tattoo_tags[tag] for tag in selected_tattoo_tags] +
[piercing_tags[tag] for tag in selected_piercing_tags] +
[expression_tags[tag] for tag in selected_expression_tags] +
[eye_tags[tag] for tag in selected_eye_tags] +
[hair_style_tags[tag] for tag in selected_hair_style_tags] +
[position_tags[tag] for tag in selected_position_tags] +
[fetish_tags[tag] for tag in selected_fetish_tags] +
[location_tags[tag] for tag in selected_location_tags] +
[camera_tags[tag] for tag in selected_camera_tags] +
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
)
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {', '.join(tag_list)}"
# Concatenate additional negative prompts
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image, seed, f"Prompt: {final_prompt}\nNegative Prompt: {full_negative_prompt}"
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Image Generator with Tags and Prompts")
result = gr.Image(label="Result", show_label=False)
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
active_tab = gr.State("Prompt Input")
with gr.Tabs() as tabs:
# Prompt Input Tab
with gr.TabItem("Prompt Input"):
prompt = gr.Textbox(label="Prompt", placeholder="Enter your custom prompt")
tabs.select(lambda: "Prompt Input", inputs=None, outputs=active_tab)
# Straight Tab
with gr.TabItem("Straight"):
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
tabs.select(lambda: "Straight", inputs=None, outputs=active_tab)
# Gay Tab
with gr.TabItem("Gay"):
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
tabs.select(lambda: "Gay", inputs=None, outputs=active_tab)
# Lesbian Tab
with gr.TabItem("Lesbian"):
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
tabs.select(lambda: "Lesbian", inputs=None, outputs=active_tab)
# Advanced Settings
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=7)
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=50, step=1, value=35)
run_button = gr.Button("Run")
run_button.click(
infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
selected_camera_tags, selected_atmosphere_tags, active_tab],
outputs=[result, seed, prompt_info]
)
demo.queue().launch()
|