Spaces:
Sleeping
Sleeping
import gradio as gr | |
from smolagents import CodeAgent,HfApiModel # adjust the import to your actual smolagents module | |
# Step 1: Set up your smolagents agent | |
def create_agent(): | |
""" | |
Initialize and return the agent. | |
Adjust parameters like model type or configuration as needed. | |
""" | |
# For example, we initialize an Agent with a sample model | |
agent = CodeAgent(tools=[], model=HfApiModel(model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/')) # Change arguments as per your agent configuration | |
return agent | |
# Create the agent instance once so that it persists across user interactions | |
agent = create_agent() | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
""" | |
This function builds the conversation history, calls the smolagents agent, | |
and streams the response back to Gradio. | |
""" | |
# Build the conversation messages list, starting with the system prompt. | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Add the latest user input. | |
messages.append({"role": "user", "content": message}) | |
# Initialize an empty response. | |
complete_response = "" | |
# Step 2: Call the agent's chat_completion method. | |
# If your smolagents agent supports streaming (i.e. yielding tokens as they are generated), | |
# this loop will yield partial responses to update the UI. | |
# If streaming is not supported, you can simply do: | |
# complete_response = agent.chat_completion(messages, max_tokens, temperature, top_p) | |
# yield complete_response | |
# for token in agent.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# temperature=temperature, | |
# top_p=top_p, | |
# stream=True # set to False if your agent does not support streaming | |
# ): | |
# complete_response += token | |
complete_response=agent.run(messages) | |
yield complete_response | |
# Step 3: Create the Gradio ChatInterface. | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
# Step 4: Launch the Gradio app. | |
if __name__ == "__main__": | |
demo.launch() | |