Spaces:
Sleeping
Sleeping
import gradio as gr | |
from smolagents import CodeAgent, HfApiModel # adjust the import to your actual smolagents module | |
# Step 1: Set up your smolagents agent. | |
def create_agent(): | |
""" | |
Initialize and return the agent. | |
Adjust parameters like model type or configuration as needed. | |
""" | |
# For example, we initialize a CodeAgent with a sample model. | |
agent = CodeAgent( | |
tools=[], | |
model=HfApiModel(model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/') | |
) | |
return agent | |
# Create the agent instance once so that it persists across user interactions. | |
agent = create_agent() | |
def combine_messages(messages: list[dict]) -> str: | |
""" | |
Helper function to combine a list of message dictionaries into a single string. | |
Each message is prefixed with its role. | |
""" | |
conversation = "" | |
for msg in messages: | |
# Capitalize the role (e.g., 'User' instead of 'user') for clarity. | |
conversation += f"{msg['role'].capitalize()}: {msg['content']}\n" | |
return conversation.strip() | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
""" | |
Build the conversation history, combine messages into a single string prompt, | |
call the smolagents agent, and stream the response back to Gradio. | |
""" | |
# Build the conversation messages list, starting with the system prompt. | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Add the latest user input. | |
messages.append({"role": "user", "content": message}) | |
# Combine the list of messages into a single string prompt. | |
prompt = combine_messages(messages) | |
# Now call the agent with the prompt. | |
complete_response = agent.run(prompt) | |
yield complete_response | |
# Step 3: Create the Gradio ChatInterface. | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
# Step 4: Launch the Gradio app. | |
if __name__ == "__main__": | |
demo.launch() | |