Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,37 @@
|
|
1 |
import gradio as gr
|
2 |
-
from smolagents import CodeAgent,HfApiModel # adjust the import to your actual smolagents module
|
3 |
|
4 |
-
# Step 1: Set up your smolagents agent
|
5 |
def create_agent():
|
6 |
"""
|
7 |
Initialize and return the agent.
|
8 |
Adjust parameters like model type or configuration as needed.
|
9 |
"""
|
10 |
-
# For example, we initialize
|
11 |
-
agent = CodeAgent(
|
|
|
|
|
|
|
12 |
return agent
|
13 |
|
14 |
-
# Create the agent instance once so that it persists across user interactions
|
15 |
agent = create_agent()
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
18 |
"""
|
19 |
-
|
20 |
-
and
|
21 |
"""
|
22 |
# Build the conversation messages list, starting with the system prompt.
|
23 |
messages = [{"role": "system", "content": system_message}]
|
@@ -29,24 +43,11 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
29 |
# Add the latest user input.
|
30 |
messages.append({"role": "user", "content": message})
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
# this loop will yield partial responses to update the UI.
|
38 |
-
# If streaming is not supported, you can simply do:
|
39 |
-
# complete_response = agent.chat_completion(messages, max_tokens, temperature, top_p)
|
40 |
-
# yield complete_response
|
41 |
-
# for token in agent.chat_completion(
|
42 |
-
# messages,
|
43 |
-
# max_tokens=max_tokens,
|
44 |
-
# temperature=temperature,
|
45 |
-
# top_p=top_p,
|
46 |
-
# stream=True # set to False if your agent does not support streaming
|
47 |
-
# ):
|
48 |
-
# complete_response += token
|
49 |
-
complete_response=agent.run(messages)
|
50 |
yield complete_response
|
51 |
|
52 |
# Step 3: Create the Gradio ChatInterface.
|
|
|
1 |
import gradio as gr
|
2 |
+
from smolagents import CodeAgent, HfApiModel # adjust the import to your actual smolagents module
|
3 |
|
4 |
+
# Step 1: Set up your smolagents agent.
|
5 |
def create_agent():
|
6 |
"""
|
7 |
Initialize and return the agent.
|
8 |
Adjust parameters like model type or configuration as needed.
|
9 |
"""
|
10 |
+
# For example, we initialize a CodeAgent with a sample model.
|
11 |
+
agent = CodeAgent(
|
12 |
+
tools=[],
|
13 |
+
model=HfApiModel(model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/')
|
14 |
+
)
|
15 |
return agent
|
16 |
|
17 |
+
# Create the agent instance once so that it persists across user interactions.
|
18 |
agent = create_agent()
|
19 |
|
20 |
+
def combine_messages(messages: list[dict]) -> str:
|
21 |
+
"""
|
22 |
+
Helper function to combine a list of message dictionaries into a single string.
|
23 |
+
Each message is prefixed with its role.
|
24 |
+
"""
|
25 |
+
conversation = ""
|
26 |
+
for msg in messages:
|
27 |
+
# Capitalize the role (e.g., 'User' instead of 'user') for clarity.
|
28 |
+
conversation += f"{msg['role'].capitalize()}: {msg['content']}\n"
|
29 |
+
return conversation.strip()
|
30 |
+
|
31 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
32 |
"""
|
33 |
+
Build the conversation history, combine messages into a single string prompt,
|
34 |
+
call the smolagents agent, and stream the response back to Gradio.
|
35 |
"""
|
36 |
# Build the conversation messages list, starting with the system prompt.
|
37 |
messages = [{"role": "system", "content": system_message}]
|
|
|
43 |
# Add the latest user input.
|
44 |
messages.append({"role": "user", "content": message})
|
45 |
|
46 |
+
# Combine the list of messages into a single string prompt.
|
47 |
+
prompt = combine_messages(messages)
|
48 |
|
49 |
+
# Now call the agent with the prompt.
|
50 |
+
complete_response = agent.run(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
yield complete_response
|
52 |
|
53 |
# Step 3: Create the Gradio ChatInterface.
|