File size: 5,950 Bytes
bfe5d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TrainingArguments,
    pipeline,
    logging,
    DataCollatorForLanguageModeling,
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from trl import SFTTrainer
import torch
import logging
from torch.utils.data import DataLoader
import multiprocessing

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def preprocess_function(examples, tokenizer):
    # Format the text
    texts = []
    for i in range(len(examples["text"])):
        text = examples["text"][i]
        texts.append(text)
    
    # Tokenize the texts with shorter max length
    tokenized = tokenizer(
        texts,
        padding=True,
        truncation=True,
        max_length=512,  # Reduced from 1024 to 512
        return_tensors="pt"
    )
    
    return tokenized

def main():
    try:
        # Load dataset
        logger.info("Loading dataset...")
        dataset = load_dataset("OpenAssistant/oasst1")
        
        # Use a smaller subset for faster training
        logger.info("Selecting smaller dataset subset...")
        dataset["train"] = dataset["train"].select(range(2000))  # Reduced to 2k examples
        
        # Model and tokenizer setup
        logger.info("Setting up model and tokenizer...")
        model_name = "microsoft/phi-2"
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        tokenizer.pad_token = tokenizer.eos_token

        # Preprocess dataset
        logger.info("Preprocessing dataset...")
        tokenized_dataset = dataset.map(
            lambda x: preprocess_function(x, tokenizer),
            batched=True,
            remove_columns=dataset["train"].column_names,
            num_proc=4  # Parallel processing for faster preprocessing
        )
        
        # Split dataset into train and eval
        logger.info("Splitting dataset into train and eval sets...")
        split_dataset = tokenized_dataset["train"].train_test_split(test_size=0.1, seed=42)
        train_dataset = split_dataset["train"]
        eval_dataset = split_dataset["test"]

        # Configure 4-bit quantization with memory optimizations
        logger.info("Configuring 4-bit quantization...")
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_storage=torch.float16
        )

        # Load model with quantization and memory optimizations
        logger.info("Loading model...")
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            quantization_config=bnb_config,
            device_map="auto",
            trust_remote_code=True,
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True
        )

        # Enable gradient checkpointing for memory efficiency
        model.gradient_checkpointing_enable()
        model.enable_input_require_grads()

        # Prepare model for k-bit training
        logger.info("Preparing model for k-bit training...")
        model = prepare_model_for_kbit_training(model)

        # LoRA configuration with optimized parameters
        logger.info("Configuring LoRA...")
        lora_config = LoraConfig(
            r=8,  # Reduced from 16 to 8
            lora_alpha=16,  # Reduced from 32 to 16
            target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM"
        )

        # Get PEFT model
        logger.info("Getting PEFT model...")
        model = get_peft_model(model, lora_config)

        # Create data collator
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer,
            mlm=False
        )

        # Training arguments with memory-optimized settings
        logger.info("Setting up training arguments...")
        training_args = TrainingArguments(
            output_dir="./phi2-qlora",
            num_train_epochs=2,
            per_device_train_batch_size=4,  # Reduced from 16 to 4
            per_device_eval_batch_size=4,
            gradient_accumulation_steps=4,  # Increased from 1 to 4
            learning_rate=2e-4,
            fp16=True,
            logging_steps=5,
            save_strategy="epoch",
            evaluation_strategy="epoch",
            # Additional optimizations
            dataloader_num_workers=2,  # Reduced from 4 to 2
            dataloader_pin_memory=True,
            warmup_ratio=0.05,
            lr_scheduler_type="cosine",
            optim="adamw_torch",
            max_grad_norm=1.0,
            group_by_length=True,
        )

        # Create trainer
        logger.info("Creating trainer...")
        trainer = SFTTrainer(
            model=model,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            tokenizer=tokenizer,
            args=training_args,
            data_collator=data_collator,
        )

        # Train the model
        logger.info("Starting training...")
        trainer.train()

        # Save the model
        logger.info("Saving model...")
        trainer.save_model("./phi2-qlora-final")

        # Save tokenizer
        logger.info("Saving tokenizer...")
        tokenizer.save_pretrained("./phi2-qlora-final")
        
        logger.info("Training completed successfully!")

    except Exception as e:
        logger.error(f"An error occurred: {str(e)}")
        raise

if __name__ == "__main__":
    multiprocessing.set_start_method('spawn')
    main()