Spaces:
Sleeping
Sleeping
Upload 12 files
Browse files- app.py +212 -0
- phi2-qlora-final/README.md +202 -0
- phi2-qlora-final/adapter_config.json +34 -0
- phi2-qlora-final/adapter_model.safetensors +3 -0
- phi2-qlora-final/added_tokens.json +40 -0
- phi2-qlora-final/merges.txt +0 -0
- phi2-qlora-final/special_tokens_map.json +24 -0
- phi2-qlora-final/tokenizer.json +0 -0
- phi2-qlora-final/tokenizer_config.json +326 -0
- phi2-qlora-final/training_args.bin +3 -0
- phi2-qlora-final/vocab.json +0 -0
- train.py +176 -0
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
+
import torch
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load the model and tokenizer
|
9 |
+
model_path = "./phi2-qlora-final"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_path,
|
13 |
+
device_map="auto",
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
trust_remote_code=True
|
16 |
+
)
|
17 |
+
|
18 |
+
# Custom CSS for better styling
|
19 |
+
custom_css = """
|
20 |
+
.gradio-container {
|
21 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
22 |
+
}
|
23 |
+
.container {
|
24 |
+
max-width: 800px;
|
25 |
+
margin: auto;
|
26 |
+
padding: 20px;
|
27 |
+
}
|
28 |
+
.title {
|
29 |
+
text-align: center;
|
30 |
+
color: #2c3e50;
|
31 |
+
margin-bottom: 20px;
|
32 |
+
}
|
33 |
+
.description {
|
34 |
+
text-align: center;
|
35 |
+
color: #7f8c8d;
|
36 |
+
margin-bottom: 30px;
|
37 |
+
}
|
38 |
+
.loading {
|
39 |
+
display: flex;
|
40 |
+
justify-content: center;
|
41 |
+
align-items: center;
|
42 |
+
height: 100px;
|
43 |
+
}
|
44 |
+
.error {
|
45 |
+
color: #e74c3c;
|
46 |
+
padding: 10px;
|
47 |
+
border-radius: 5px;
|
48 |
+
background-color: #fde8e8;
|
49 |
+
margin: 10px 0;
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
def generate_response(prompt, max_length=512, temperature=0.7, top_p=0.9, top_k=50):
|
54 |
+
"""Generate response with progress indicator"""
|
55 |
+
try:
|
56 |
+
if not prompt.strip():
|
57 |
+
return "Please enter a prompt."
|
58 |
+
|
59 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
60 |
+
|
61 |
+
outputs = model.generate(
|
62 |
+
**inputs,
|
63 |
+
max_length=max_length,
|
64 |
+
temperature=temperature,
|
65 |
+
num_return_sequences=1,
|
66 |
+
pad_token_id=tokenizer.eos_token_id,
|
67 |
+
do_sample=True,
|
68 |
+
top_p=top_p,
|
69 |
+
top_k=top_k,
|
70 |
+
)
|
71 |
+
|
72 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
73 |
+
return response
|
74 |
+
except Exception as e:
|
75 |
+
return f"Error generating response: {str(e)}"
|
76 |
+
|
77 |
+
def clear_all():
|
78 |
+
"""Clear all inputs and outputs"""
|
79 |
+
return "", "", 512, 0.7, 0.9, 50
|
80 |
+
|
81 |
+
# Example prompts
|
82 |
+
example_prompts = [
|
83 |
+
"What is the capital of France?",
|
84 |
+
"Explain quantum computing in simple terms.",
|
85 |
+
"Write a short story about a robot learning to paint.",
|
86 |
+
"What are the benefits of meditation?",
|
87 |
+
"How does photosynthesis work?",
|
88 |
+
]
|
89 |
+
|
90 |
+
# Create the Gradio interface
|
91 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
|
92 |
+
gr.Markdown(
|
93 |
+
"""
|
94 |
+
# 🤖 Phi-2 QLoRA Chat Interface
|
95 |
+
|
96 |
+
Chat with the fine-tuned Phi-2 model using QLoRA. Adjust the parameters below to control the generation.
|
97 |
+
""",
|
98 |
+
elem_classes="title"
|
99 |
+
)
|
100 |
+
|
101 |
+
gr.Markdown(
|
102 |
+
"""
|
103 |
+
This interface allows you to interact with a fine-tuned Phi-2 model. You can adjust various parameters to control the generation process.
|
104 |
+
""",
|
105 |
+
elem_classes="description"
|
106 |
+
)
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column(scale=2):
|
110 |
+
# Input section
|
111 |
+
with gr.Group():
|
112 |
+
gr.Markdown("### 💭 Input")
|
113 |
+
prompt = gr.Textbox(
|
114 |
+
label="Enter your prompt:",
|
115 |
+
placeholder="Type your message here...",
|
116 |
+
lines=3,
|
117 |
+
show_label=True,
|
118 |
+
container=True
|
119 |
+
)
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
max_length = gr.Slider(
|
123 |
+
minimum=64,
|
124 |
+
maximum=1024,
|
125 |
+
value=512,
|
126 |
+
step=64,
|
127 |
+
label="Max Length",
|
128 |
+
info="Maximum length of generated response"
|
129 |
+
)
|
130 |
+
temperature = gr.Slider(
|
131 |
+
minimum=0.1,
|
132 |
+
maximum=1.0,
|
133 |
+
value=0.7,
|
134 |
+
step=0.1,
|
135 |
+
label="Temperature",
|
136 |
+
info="Higher values make output more random"
|
137 |
+
)
|
138 |
+
|
139 |
+
with gr.Row():
|
140 |
+
top_p = gr.Slider(
|
141 |
+
minimum=0.1,
|
142 |
+
maximum=1.0,
|
143 |
+
value=0.9,
|
144 |
+
step=0.1,
|
145 |
+
label="Top P",
|
146 |
+
info="Nucleus sampling parameter"
|
147 |
+
)
|
148 |
+
top_k = gr.Slider(
|
149 |
+
minimum=1,
|
150 |
+
maximum=100,
|
151 |
+
value=50,
|
152 |
+
step=1,
|
153 |
+
label="Top K",
|
154 |
+
info="Top-k sampling parameter"
|
155 |
+
)
|
156 |
+
|
157 |
+
# Buttons
|
158 |
+
with gr.Row():
|
159 |
+
submit_btn = gr.Button("Generate Response", variant="primary")
|
160 |
+
clear_btn = gr.Button("Clear All", variant="secondary")
|
161 |
+
|
162 |
+
with gr.Column(scale=2):
|
163 |
+
# Output section
|
164 |
+
with gr.Group():
|
165 |
+
gr.Markdown("### 🤖 Response")
|
166 |
+
output = gr.Textbox(
|
167 |
+
label="Model Response:",
|
168 |
+
lines=5,
|
169 |
+
show_label=True,
|
170 |
+
container=True
|
171 |
+
)
|
172 |
+
|
173 |
+
# Examples section
|
174 |
+
with gr.Group():
|
175 |
+
gr.Markdown("### 📝 Example Prompts")
|
176 |
+
gr.Examples(
|
177 |
+
examples=example_prompts,
|
178 |
+
inputs=prompt,
|
179 |
+
outputs=output,
|
180 |
+
fn=generate_response,
|
181 |
+
cache_examples=True
|
182 |
+
)
|
183 |
+
|
184 |
+
# Footer
|
185 |
+
gr.Markdown(
|
186 |
+
"""
|
187 |
+
---
|
188 |
+
Made with ❤️ using Phi-2 and QLoRA
|
189 |
+
""",
|
190 |
+
elem_classes="footer"
|
191 |
+
)
|
192 |
+
|
193 |
+
# Event handlers
|
194 |
+
submit_btn.click(
|
195 |
+
fn=generate_response,
|
196 |
+
inputs=[prompt, max_length, temperature, top_p, top_k],
|
197 |
+
outputs=output
|
198 |
+
)
|
199 |
+
|
200 |
+
clear_btn.click(
|
201 |
+
fn=clear_all,
|
202 |
+
inputs=[],
|
203 |
+
outputs=[prompt, output, max_length, temperature, top_p, top_k]
|
204 |
+
)
|
205 |
+
|
206 |
+
if __name__ == "__main__":
|
207 |
+
iface.launch(
|
208 |
+
share=True, # Enable sharing
|
209 |
+
server_name="0.0.0.0", # Allow external access
|
210 |
+
server_port=7860, # Default Gradio port
|
211 |
+
show_error=True # Show detailed error messages
|
212 |
+
)
|
phi2-qlora-final/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/phi-2
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
phi2-qlora-final/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "microsoft/phi-2",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 8,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"o_proj",
|
27 |
+
"q_proj",
|
28 |
+
"v_proj",
|
29 |
+
"k_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
phi2-qlora-final/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc69559ce651a6a9261ad792f1edaf98f436d54e52df0ce004b57d88672b2367
|
3 |
+
size 15754072
|
phi2-qlora-final/added_tokens.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"\t\t": 50294,
|
3 |
+
"\t\t\t": 50293,
|
4 |
+
"\t\t\t\t": 50292,
|
5 |
+
"\t\t\t\t\t": 50291,
|
6 |
+
"\t\t\t\t\t\t": 50290,
|
7 |
+
"\t\t\t\t\t\t\t": 50289,
|
8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
10 |
+
" ": 50286,
|
11 |
+
" ": 50285,
|
12 |
+
" ": 50284,
|
13 |
+
" ": 50283,
|
14 |
+
" ": 50282,
|
15 |
+
" ": 50281,
|
16 |
+
" ": 50280,
|
17 |
+
" ": 50279,
|
18 |
+
" ": 50278,
|
19 |
+
" ": 50277,
|
20 |
+
" ": 50276,
|
21 |
+
" ": 50275,
|
22 |
+
" ": 50274,
|
23 |
+
" ": 50273,
|
24 |
+
" ": 50272,
|
25 |
+
" ": 50271,
|
26 |
+
" ": 50270,
|
27 |
+
" ": 50269,
|
28 |
+
" ": 50268,
|
29 |
+
" ": 50267,
|
30 |
+
" ": 50266,
|
31 |
+
" ": 50265,
|
32 |
+
" ": 50264,
|
33 |
+
" ": 50263,
|
34 |
+
" ": 50262,
|
35 |
+
" ": 50261,
|
36 |
+
" ": 50260,
|
37 |
+
" ": 50259,
|
38 |
+
" ": 50258,
|
39 |
+
" ": 50257
|
40 |
+
}
|
phi2-qlora-final/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
phi2-qlora-final/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
phi2-qlora-final/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
phi2-qlora-final/tokenizer_config.json
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"50256": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"50257": {
|
13 |
+
"content": " ",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": false
|
19 |
+
},
|
20 |
+
"50258": {
|
21 |
+
"content": " ",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"50259": {
|
29 |
+
"content": " ",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": false
|
35 |
+
},
|
36 |
+
"50260": {
|
37 |
+
"content": " ",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": false
|
43 |
+
},
|
44 |
+
"50261": {
|
45 |
+
"content": " ",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": false
|
51 |
+
},
|
52 |
+
"50262": {
|
53 |
+
"content": " ",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": false
|
59 |
+
},
|
60 |
+
"50263": {
|
61 |
+
"content": " ",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": false
|
67 |
+
},
|
68 |
+
"50264": {
|
69 |
+
"content": " ",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": true,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"50265": {
|
77 |
+
"content": " ",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": true,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"50266": {
|
85 |
+
"content": " ",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": true,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"50267": {
|
93 |
+
"content": " ",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": true,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"50268": {
|
101 |
+
"content": " ",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": true,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"50269": {
|
109 |
+
"content": " ",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": false
|
115 |
+
},
|
116 |
+
"50270": {
|
117 |
+
"content": " ",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": true,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"50271": {
|
125 |
+
"content": " ",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": true,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"50272": {
|
133 |
+
"content": " ",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": true,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"50273": {
|
141 |
+
"content": " ",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": true,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"50274": {
|
149 |
+
"content": " ",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": true,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"50275": {
|
157 |
+
"content": " ",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": true,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"50276": {
|
165 |
+
"content": " ",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"50277": {
|
173 |
+
"content": " ",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": true,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"50278": {
|
181 |
+
"content": " ",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": true,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"50279": {
|
189 |
+
"content": " ",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": true,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"50280": {
|
197 |
+
"content": " ",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": true,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
},
|
204 |
+
"50281": {
|
205 |
+
"content": " ",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": true,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": false
|
211 |
+
},
|
212 |
+
"50282": {
|
213 |
+
"content": " ",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": true,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": false
|
219 |
+
},
|
220 |
+
"50283": {
|
221 |
+
"content": " ",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": true,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": false
|
227 |
+
},
|
228 |
+
"50284": {
|
229 |
+
"content": " ",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": true,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": false
|
235 |
+
},
|
236 |
+
"50285": {
|
237 |
+
"content": " ",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": true,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": false
|
243 |
+
},
|
244 |
+
"50286": {
|
245 |
+
"content": " ",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": true,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": false
|
251 |
+
},
|
252 |
+
"50287": {
|
253 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": true,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": false
|
259 |
+
},
|
260 |
+
"50288": {
|
261 |
+
"content": "\t\t\t\t\t\t\t\t",
|
262 |
+
"lstrip": false,
|
263 |
+
"normalized": true,
|
264 |
+
"rstrip": false,
|
265 |
+
"single_word": false,
|
266 |
+
"special": false
|
267 |
+
},
|
268 |
+
"50289": {
|
269 |
+
"content": "\t\t\t\t\t\t\t",
|
270 |
+
"lstrip": false,
|
271 |
+
"normalized": true,
|
272 |
+
"rstrip": false,
|
273 |
+
"single_word": false,
|
274 |
+
"special": false
|
275 |
+
},
|
276 |
+
"50290": {
|
277 |
+
"content": "\t\t\t\t\t\t",
|
278 |
+
"lstrip": false,
|
279 |
+
"normalized": true,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false,
|
282 |
+
"special": false
|
283 |
+
},
|
284 |
+
"50291": {
|
285 |
+
"content": "\t\t\t\t\t",
|
286 |
+
"lstrip": false,
|
287 |
+
"normalized": true,
|
288 |
+
"rstrip": false,
|
289 |
+
"single_word": false,
|
290 |
+
"special": false
|
291 |
+
},
|
292 |
+
"50292": {
|
293 |
+
"content": "\t\t\t\t",
|
294 |
+
"lstrip": false,
|
295 |
+
"normalized": true,
|
296 |
+
"rstrip": false,
|
297 |
+
"single_word": false,
|
298 |
+
"special": false
|
299 |
+
},
|
300 |
+
"50293": {
|
301 |
+
"content": "\t\t\t",
|
302 |
+
"lstrip": false,
|
303 |
+
"normalized": true,
|
304 |
+
"rstrip": false,
|
305 |
+
"single_word": false,
|
306 |
+
"special": false
|
307 |
+
},
|
308 |
+
"50294": {
|
309 |
+
"content": "\t\t",
|
310 |
+
"lstrip": false,
|
311 |
+
"normalized": true,
|
312 |
+
"rstrip": false,
|
313 |
+
"single_word": false,
|
314 |
+
"special": false
|
315 |
+
}
|
316 |
+
},
|
317 |
+
"bos_token": "<|endoftext|>",
|
318 |
+
"clean_up_tokenization_spaces": true,
|
319 |
+
"eos_token": "<|endoftext|>",
|
320 |
+
"extra_special_tokens": {},
|
321 |
+
"model_max_length": 2048,
|
322 |
+
"pad_token": "<|endoftext|>",
|
323 |
+
"return_token_type_ids": false,
|
324 |
+
"tokenizer_class": "CodeGenTokenizer",
|
325 |
+
"unk_token": "<|endoftext|>"
|
326 |
+
}
|
phi2-qlora-final/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:080cb7f5521076a88a3e9b163a231d1fb82959fccc6ccbaa0e170c6a6c1eb6c5
|
3 |
+
size 5560
|
phi2-qlora-final/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import (
|
4 |
+
AutoModelForCausalLM,
|
5 |
+
AutoTokenizer,
|
6 |
+
BitsAndBytesConfig,
|
7 |
+
TrainingArguments,
|
8 |
+
pipeline,
|
9 |
+
logging,
|
10 |
+
DataCollatorForLanguageModeling,
|
11 |
+
)
|
12 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
13 |
+
from trl import SFTTrainer
|
14 |
+
import torch
|
15 |
+
import logging
|
16 |
+
from torch.utils.data import DataLoader
|
17 |
+
import multiprocessing
|
18 |
+
|
19 |
+
# Configure logging
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
def preprocess_function(examples, tokenizer):
|
24 |
+
# Format the text
|
25 |
+
texts = []
|
26 |
+
for i in range(len(examples["text"])):
|
27 |
+
text = examples["text"][i]
|
28 |
+
texts.append(text)
|
29 |
+
|
30 |
+
# Tokenize the texts with shorter max length
|
31 |
+
tokenized = tokenizer(
|
32 |
+
texts,
|
33 |
+
padding=True,
|
34 |
+
truncation=True,
|
35 |
+
max_length=512, # Reduced from 1024 to 512
|
36 |
+
return_tensors="pt"
|
37 |
+
)
|
38 |
+
|
39 |
+
return tokenized
|
40 |
+
|
41 |
+
def main():
|
42 |
+
try:
|
43 |
+
# Load dataset
|
44 |
+
logger.info("Loading dataset...")
|
45 |
+
dataset = load_dataset("OpenAssistant/oasst1")
|
46 |
+
|
47 |
+
# Use a smaller subset for faster training
|
48 |
+
logger.info("Selecting smaller dataset subset...")
|
49 |
+
dataset["train"] = dataset["train"].select(range(2000)) # Reduced to 2k examples
|
50 |
+
|
51 |
+
# Model and tokenizer setup
|
52 |
+
logger.info("Setting up model and tokenizer...")
|
53 |
+
model_name = "microsoft/phi-2"
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
55 |
+
tokenizer.pad_token = tokenizer.eos_token
|
56 |
+
|
57 |
+
# Preprocess dataset
|
58 |
+
logger.info("Preprocessing dataset...")
|
59 |
+
tokenized_dataset = dataset.map(
|
60 |
+
lambda x: preprocess_function(x, tokenizer),
|
61 |
+
batched=True,
|
62 |
+
remove_columns=dataset["train"].column_names,
|
63 |
+
num_proc=4 # Parallel processing for faster preprocessing
|
64 |
+
)
|
65 |
+
|
66 |
+
# Split dataset into train and eval
|
67 |
+
logger.info("Splitting dataset into train and eval sets...")
|
68 |
+
split_dataset = tokenized_dataset["train"].train_test_split(test_size=0.1, seed=42)
|
69 |
+
train_dataset = split_dataset["train"]
|
70 |
+
eval_dataset = split_dataset["test"]
|
71 |
+
|
72 |
+
# Configure 4-bit quantization with memory optimizations
|
73 |
+
logger.info("Configuring 4-bit quantization...")
|
74 |
+
bnb_config = BitsAndBytesConfig(
|
75 |
+
load_in_4bit=True,
|
76 |
+
bnb_4bit_quant_type="nf4",
|
77 |
+
bnb_4bit_compute_dtype=torch.float16,
|
78 |
+
bnb_4bit_use_double_quant=True,
|
79 |
+
bnb_4bit_quant_storage=torch.float16
|
80 |
+
)
|
81 |
+
|
82 |
+
# Load model with quantization and memory optimizations
|
83 |
+
logger.info("Loading model...")
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
85 |
+
model_name,
|
86 |
+
quantization_config=bnb_config,
|
87 |
+
device_map="auto",
|
88 |
+
trust_remote_code=True,
|
89 |
+
torch_dtype=torch.float16,
|
90 |
+
low_cpu_mem_usage=True
|
91 |
+
)
|
92 |
+
|
93 |
+
# Enable gradient checkpointing for memory efficiency
|
94 |
+
model.gradient_checkpointing_enable()
|
95 |
+
model.enable_input_require_grads()
|
96 |
+
|
97 |
+
# Prepare model for k-bit training
|
98 |
+
logger.info("Preparing model for k-bit training...")
|
99 |
+
model = prepare_model_for_kbit_training(model)
|
100 |
+
|
101 |
+
# LoRA configuration with optimized parameters
|
102 |
+
logger.info("Configuring LoRA...")
|
103 |
+
lora_config = LoraConfig(
|
104 |
+
r=8, # Reduced from 16 to 8
|
105 |
+
lora_alpha=16, # Reduced from 32 to 16
|
106 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
107 |
+
lora_dropout=0.05,
|
108 |
+
bias="none",
|
109 |
+
task_type="CAUSAL_LM"
|
110 |
+
)
|
111 |
+
|
112 |
+
# Get PEFT model
|
113 |
+
logger.info("Getting PEFT model...")
|
114 |
+
model = get_peft_model(model, lora_config)
|
115 |
+
|
116 |
+
# Create data collator
|
117 |
+
data_collator = DataCollatorForLanguageModeling(
|
118 |
+
tokenizer=tokenizer,
|
119 |
+
mlm=False
|
120 |
+
)
|
121 |
+
|
122 |
+
# Training arguments with memory-optimized settings
|
123 |
+
logger.info("Setting up training arguments...")
|
124 |
+
training_args = TrainingArguments(
|
125 |
+
output_dir="./phi2-qlora",
|
126 |
+
num_train_epochs=2,
|
127 |
+
per_device_train_batch_size=4, # Reduced from 16 to 4
|
128 |
+
per_device_eval_batch_size=4,
|
129 |
+
gradient_accumulation_steps=4, # Increased from 1 to 4
|
130 |
+
learning_rate=2e-4,
|
131 |
+
fp16=True,
|
132 |
+
logging_steps=5,
|
133 |
+
save_strategy="epoch",
|
134 |
+
evaluation_strategy="epoch",
|
135 |
+
# Additional optimizations
|
136 |
+
dataloader_num_workers=2, # Reduced from 4 to 2
|
137 |
+
dataloader_pin_memory=True,
|
138 |
+
warmup_ratio=0.05,
|
139 |
+
lr_scheduler_type="cosine",
|
140 |
+
optim="adamw_torch",
|
141 |
+
max_grad_norm=1.0,
|
142 |
+
group_by_length=True,
|
143 |
+
)
|
144 |
+
|
145 |
+
# Create trainer
|
146 |
+
logger.info("Creating trainer...")
|
147 |
+
trainer = SFTTrainer(
|
148 |
+
model=model,
|
149 |
+
train_dataset=train_dataset,
|
150 |
+
eval_dataset=eval_dataset,
|
151 |
+
tokenizer=tokenizer,
|
152 |
+
args=training_args,
|
153 |
+
data_collator=data_collator,
|
154 |
+
)
|
155 |
+
|
156 |
+
# Train the model
|
157 |
+
logger.info("Starting training...")
|
158 |
+
trainer.train()
|
159 |
+
|
160 |
+
# Save the model
|
161 |
+
logger.info("Saving model...")
|
162 |
+
trainer.save_model("./phi2-qlora-final")
|
163 |
+
|
164 |
+
# Save tokenizer
|
165 |
+
logger.info("Saving tokenizer...")
|
166 |
+
tokenizer.save_pretrained("./phi2-qlora-final")
|
167 |
+
|
168 |
+
logger.info("Training completed successfully!")
|
169 |
+
|
170 |
+
except Exception as e:
|
171 |
+
logger.error(f"An error occurred: {str(e)}")
|
172 |
+
raise
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
multiprocessing.set_start_method('spawn')
|
176 |
+
main()
|