padmanabhbosamia commited on
Commit
bfe5d0e
·
verified ·
1 Parent(s): e82d7ef

Upload 12 files

Browse files
app.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3
+ import torch
4
+ import random
5
+ import time
6
+ import os
7
+
8
+ # Load the model and tokenizer
9
+ model_path = "./phi2-qlora-final"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
11
+ model = AutoModelForCausalLM.from_pretrained(
12
+ model_path,
13
+ device_map="auto",
14
+ torch_dtype=torch.float16,
15
+ trust_remote_code=True
16
+ )
17
+
18
+ # Custom CSS for better styling
19
+ custom_css = """
20
+ .gradio-container {
21
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
22
+ }
23
+ .container {
24
+ max-width: 800px;
25
+ margin: auto;
26
+ padding: 20px;
27
+ }
28
+ .title {
29
+ text-align: center;
30
+ color: #2c3e50;
31
+ margin-bottom: 20px;
32
+ }
33
+ .description {
34
+ text-align: center;
35
+ color: #7f8c8d;
36
+ margin-bottom: 30px;
37
+ }
38
+ .loading {
39
+ display: flex;
40
+ justify-content: center;
41
+ align-items: center;
42
+ height: 100px;
43
+ }
44
+ .error {
45
+ color: #e74c3c;
46
+ padding: 10px;
47
+ border-radius: 5px;
48
+ background-color: #fde8e8;
49
+ margin: 10px 0;
50
+ }
51
+ """
52
+
53
+ def generate_response(prompt, max_length=512, temperature=0.7, top_p=0.9, top_k=50):
54
+ """Generate response with progress indicator"""
55
+ try:
56
+ if not prompt.strip():
57
+ return "Please enter a prompt."
58
+
59
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
60
+
61
+ outputs = model.generate(
62
+ **inputs,
63
+ max_length=max_length,
64
+ temperature=temperature,
65
+ num_return_sequences=1,
66
+ pad_token_id=tokenizer.eos_token_id,
67
+ do_sample=True,
68
+ top_p=top_p,
69
+ top_k=top_k,
70
+ )
71
+
72
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
73
+ return response
74
+ except Exception as e:
75
+ return f"Error generating response: {str(e)}"
76
+
77
+ def clear_all():
78
+ """Clear all inputs and outputs"""
79
+ return "", "", 512, 0.7, 0.9, 50
80
+
81
+ # Example prompts
82
+ example_prompts = [
83
+ "What is the capital of France?",
84
+ "Explain quantum computing in simple terms.",
85
+ "Write a short story about a robot learning to paint.",
86
+ "What are the benefits of meditation?",
87
+ "How does photosynthesis work?",
88
+ ]
89
+
90
+ # Create the Gradio interface
91
+ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
92
+ gr.Markdown(
93
+ """
94
+ # 🤖 Phi-2 QLoRA Chat Interface
95
+
96
+ Chat with the fine-tuned Phi-2 model using QLoRA. Adjust the parameters below to control the generation.
97
+ """,
98
+ elem_classes="title"
99
+ )
100
+
101
+ gr.Markdown(
102
+ """
103
+ This interface allows you to interact with a fine-tuned Phi-2 model. You can adjust various parameters to control the generation process.
104
+ """,
105
+ elem_classes="description"
106
+ )
107
+
108
+ with gr.Row():
109
+ with gr.Column(scale=2):
110
+ # Input section
111
+ with gr.Group():
112
+ gr.Markdown("### 💭 Input")
113
+ prompt = gr.Textbox(
114
+ label="Enter your prompt:",
115
+ placeholder="Type your message here...",
116
+ lines=3,
117
+ show_label=True,
118
+ container=True
119
+ )
120
+
121
+ with gr.Row():
122
+ max_length = gr.Slider(
123
+ minimum=64,
124
+ maximum=1024,
125
+ value=512,
126
+ step=64,
127
+ label="Max Length",
128
+ info="Maximum length of generated response"
129
+ )
130
+ temperature = gr.Slider(
131
+ minimum=0.1,
132
+ maximum=1.0,
133
+ value=0.7,
134
+ step=0.1,
135
+ label="Temperature",
136
+ info="Higher values make output more random"
137
+ )
138
+
139
+ with gr.Row():
140
+ top_p = gr.Slider(
141
+ minimum=0.1,
142
+ maximum=1.0,
143
+ value=0.9,
144
+ step=0.1,
145
+ label="Top P",
146
+ info="Nucleus sampling parameter"
147
+ )
148
+ top_k = gr.Slider(
149
+ minimum=1,
150
+ maximum=100,
151
+ value=50,
152
+ step=1,
153
+ label="Top K",
154
+ info="Top-k sampling parameter"
155
+ )
156
+
157
+ # Buttons
158
+ with gr.Row():
159
+ submit_btn = gr.Button("Generate Response", variant="primary")
160
+ clear_btn = gr.Button("Clear All", variant="secondary")
161
+
162
+ with gr.Column(scale=2):
163
+ # Output section
164
+ with gr.Group():
165
+ gr.Markdown("### 🤖 Response")
166
+ output = gr.Textbox(
167
+ label="Model Response:",
168
+ lines=5,
169
+ show_label=True,
170
+ container=True
171
+ )
172
+
173
+ # Examples section
174
+ with gr.Group():
175
+ gr.Markdown("### 📝 Example Prompts")
176
+ gr.Examples(
177
+ examples=example_prompts,
178
+ inputs=prompt,
179
+ outputs=output,
180
+ fn=generate_response,
181
+ cache_examples=True
182
+ )
183
+
184
+ # Footer
185
+ gr.Markdown(
186
+ """
187
+ ---
188
+ Made with ❤️ using Phi-2 and QLoRA
189
+ """,
190
+ elem_classes="footer"
191
+ )
192
+
193
+ # Event handlers
194
+ submit_btn.click(
195
+ fn=generate_response,
196
+ inputs=[prompt, max_length, temperature, top_p, top_k],
197
+ outputs=output
198
+ )
199
+
200
+ clear_btn.click(
201
+ fn=clear_all,
202
+ inputs=[],
203
+ outputs=[prompt, output, max_length, temperature, top_p, top_k]
204
+ )
205
+
206
+ if __name__ == "__main__":
207
+ iface.launch(
208
+ share=True, # Enable sharing
209
+ server_name="0.0.0.0", # Allow external access
210
+ server_port=7860, # Default Gradio port
211
+ show_error=True # Show detailed error messages
212
+ )
phi2-qlora-final/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/phi-2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
phi2-qlora-final/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/phi-2",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "o_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
phi2-qlora-final/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc69559ce651a6a9261ad792f1edaf98f436d54e52df0ce004b57d88672b2367
3
+ size 15754072
phi2-qlora-final/added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
phi2-qlora-final/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
phi2-qlora-final/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
phi2-qlora-final/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
phi2-qlora-final/tokenizer_config.json ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ }
316
+ },
317
+ "bos_token": "<|endoftext|>",
318
+ "clean_up_tokenization_spaces": true,
319
+ "eos_token": "<|endoftext|>",
320
+ "extra_special_tokens": {},
321
+ "model_max_length": 2048,
322
+ "pad_token": "<|endoftext|>",
323
+ "return_token_type_ids": false,
324
+ "tokenizer_class": "CodeGenTokenizer",
325
+ "unk_token": "<|endoftext|>"
326
+ }
phi2-qlora-final/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:080cb7f5521076a88a3e9b163a231d1fb82959fccc6ccbaa0e170c6a6c1eb6c5
3
+ size 5560
phi2-qlora-final/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
train.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datasets import load_dataset
3
+ from transformers import (
4
+ AutoModelForCausalLM,
5
+ AutoTokenizer,
6
+ BitsAndBytesConfig,
7
+ TrainingArguments,
8
+ pipeline,
9
+ logging,
10
+ DataCollatorForLanguageModeling,
11
+ )
12
+ from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
13
+ from trl import SFTTrainer
14
+ import torch
15
+ import logging
16
+ from torch.utils.data import DataLoader
17
+ import multiprocessing
18
+
19
+ # Configure logging
20
+ logging.basicConfig(level=logging.INFO)
21
+ logger = logging.getLogger(__name__)
22
+
23
+ def preprocess_function(examples, tokenizer):
24
+ # Format the text
25
+ texts = []
26
+ for i in range(len(examples["text"])):
27
+ text = examples["text"][i]
28
+ texts.append(text)
29
+
30
+ # Tokenize the texts with shorter max length
31
+ tokenized = tokenizer(
32
+ texts,
33
+ padding=True,
34
+ truncation=True,
35
+ max_length=512, # Reduced from 1024 to 512
36
+ return_tensors="pt"
37
+ )
38
+
39
+ return tokenized
40
+
41
+ def main():
42
+ try:
43
+ # Load dataset
44
+ logger.info("Loading dataset...")
45
+ dataset = load_dataset("OpenAssistant/oasst1")
46
+
47
+ # Use a smaller subset for faster training
48
+ logger.info("Selecting smaller dataset subset...")
49
+ dataset["train"] = dataset["train"].select(range(2000)) # Reduced to 2k examples
50
+
51
+ # Model and tokenizer setup
52
+ logger.info("Setting up model and tokenizer...")
53
+ model_name = "microsoft/phi-2"
54
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
55
+ tokenizer.pad_token = tokenizer.eos_token
56
+
57
+ # Preprocess dataset
58
+ logger.info("Preprocessing dataset...")
59
+ tokenized_dataset = dataset.map(
60
+ lambda x: preprocess_function(x, tokenizer),
61
+ batched=True,
62
+ remove_columns=dataset["train"].column_names,
63
+ num_proc=4 # Parallel processing for faster preprocessing
64
+ )
65
+
66
+ # Split dataset into train and eval
67
+ logger.info("Splitting dataset into train and eval sets...")
68
+ split_dataset = tokenized_dataset["train"].train_test_split(test_size=0.1, seed=42)
69
+ train_dataset = split_dataset["train"]
70
+ eval_dataset = split_dataset["test"]
71
+
72
+ # Configure 4-bit quantization with memory optimizations
73
+ logger.info("Configuring 4-bit quantization...")
74
+ bnb_config = BitsAndBytesConfig(
75
+ load_in_4bit=True,
76
+ bnb_4bit_quant_type="nf4",
77
+ bnb_4bit_compute_dtype=torch.float16,
78
+ bnb_4bit_use_double_quant=True,
79
+ bnb_4bit_quant_storage=torch.float16
80
+ )
81
+
82
+ # Load model with quantization and memory optimizations
83
+ logger.info("Loading model...")
84
+ model = AutoModelForCausalLM.from_pretrained(
85
+ model_name,
86
+ quantization_config=bnb_config,
87
+ device_map="auto",
88
+ trust_remote_code=True,
89
+ torch_dtype=torch.float16,
90
+ low_cpu_mem_usage=True
91
+ )
92
+
93
+ # Enable gradient checkpointing for memory efficiency
94
+ model.gradient_checkpointing_enable()
95
+ model.enable_input_require_grads()
96
+
97
+ # Prepare model for k-bit training
98
+ logger.info("Preparing model for k-bit training...")
99
+ model = prepare_model_for_kbit_training(model)
100
+
101
+ # LoRA configuration with optimized parameters
102
+ logger.info("Configuring LoRA...")
103
+ lora_config = LoraConfig(
104
+ r=8, # Reduced from 16 to 8
105
+ lora_alpha=16, # Reduced from 32 to 16
106
+ target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
107
+ lora_dropout=0.05,
108
+ bias="none",
109
+ task_type="CAUSAL_LM"
110
+ )
111
+
112
+ # Get PEFT model
113
+ logger.info("Getting PEFT model...")
114
+ model = get_peft_model(model, lora_config)
115
+
116
+ # Create data collator
117
+ data_collator = DataCollatorForLanguageModeling(
118
+ tokenizer=tokenizer,
119
+ mlm=False
120
+ )
121
+
122
+ # Training arguments with memory-optimized settings
123
+ logger.info("Setting up training arguments...")
124
+ training_args = TrainingArguments(
125
+ output_dir="./phi2-qlora",
126
+ num_train_epochs=2,
127
+ per_device_train_batch_size=4, # Reduced from 16 to 4
128
+ per_device_eval_batch_size=4,
129
+ gradient_accumulation_steps=4, # Increased from 1 to 4
130
+ learning_rate=2e-4,
131
+ fp16=True,
132
+ logging_steps=5,
133
+ save_strategy="epoch",
134
+ evaluation_strategy="epoch",
135
+ # Additional optimizations
136
+ dataloader_num_workers=2, # Reduced from 4 to 2
137
+ dataloader_pin_memory=True,
138
+ warmup_ratio=0.05,
139
+ lr_scheduler_type="cosine",
140
+ optim="adamw_torch",
141
+ max_grad_norm=1.0,
142
+ group_by_length=True,
143
+ )
144
+
145
+ # Create trainer
146
+ logger.info("Creating trainer...")
147
+ trainer = SFTTrainer(
148
+ model=model,
149
+ train_dataset=train_dataset,
150
+ eval_dataset=eval_dataset,
151
+ tokenizer=tokenizer,
152
+ args=training_args,
153
+ data_collator=data_collator,
154
+ )
155
+
156
+ # Train the model
157
+ logger.info("Starting training...")
158
+ trainer.train()
159
+
160
+ # Save the model
161
+ logger.info("Saving model...")
162
+ trainer.save_model("./phi2-qlora-final")
163
+
164
+ # Save tokenizer
165
+ logger.info("Saving tokenizer...")
166
+ tokenizer.save_pretrained("./phi2-qlora-final")
167
+
168
+ logger.info("Training completed successfully!")
169
+
170
+ except Exception as e:
171
+ logger.error(f"An error occurred: {str(e)}")
172
+ raise
173
+
174
+ if __name__ == "__main__":
175
+ multiprocessing.set_start_method('spawn')
176
+ main()