Spaces:
Sleeping
Sleeping
File size: 6,311 Bytes
bfe5d0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import random
import time
import os
# Load the model and tokenizer
model_path = "./phi2-qlora-final"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True
)
# Custom CSS for better styling
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.container {
max-width: 800px;
margin: auto;
padding: 20px;
}
.title {
text-align: center;
color: #2c3e50;
margin-bottom: 20px;
}
.description {
text-align: center;
color: #7f8c8d;
margin-bottom: 30px;
}
.loading {
display: flex;
justify-content: center;
align-items: center;
height: 100px;
}
.error {
color: #e74c3c;
padding: 10px;
border-radius: 5px;
background-color: #fde8e8;
margin: 10px 0;
}
"""
def generate_response(prompt, max_length=512, temperature=0.7, top_p=0.9, top_k=50):
"""Generate response with progress indicator"""
try:
if not prompt.strip():
return "Please enter a prompt."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_p=top_p,
top_k=top_k,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except Exception as e:
return f"Error generating response: {str(e)}"
def clear_all():
"""Clear all inputs and outputs"""
return "", "", 512, 0.7, 0.9, 50
# Example prompts
example_prompts = [
"What is the capital of France?",
"Explain quantum computing in simple terms.",
"Write a short story about a robot learning to paint.",
"What are the benefits of meditation?",
"How does photosynthesis work?",
]
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
gr.Markdown(
"""
# π€ Phi-2 QLoRA Chat Interface
Chat with the fine-tuned Phi-2 model using QLoRA. Adjust the parameters below to control the generation.
""",
elem_classes="title"
)
gr.Markdown(
"""
This interface allows you to interact with a fine-tuned Phi-2 model. You can adjust various parameters to control the generation process.
""",
elem_classes="description"
)
with gr.Row():
with gr.Column(scale=2):
# Input section
with gr.Group():
gr.Markdown("### π Input")
prompt = gr.Textbox(
label="Enter your prompt:",
placeholder="Type your message here...",
lines=3,
show_label=True,
container=True
)
with gr.Row():
max_length = gr.Slider(
minimum=64,
maximum=1024,
value=512,
step=64,
label="Max Length",
info="Maximum length of generated response"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher values make output more random"
)
with gr.Row():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="Top P",
info="Nucleus sampling parameter"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top K",
info="Top-k sampling parameter"
)
# Buttons
with gr.Row():
submit_btn = gr.Button("Generate Response", variant="primary")
clear_btn = gr.Button("Clear All", variant="secondary")
with gr.Column(scale=2):
# Output section
with gr.Group():
gr.Markdown("### π€ Response")
output = gr.Textbox(
label="Model Response:",
lines=5,
show_label=True,
container=True
)
# Examples section
with gr.Group():
gr.Markdown("### π Example Prompts")
gr.Examples(
examples=example_prompts,
inputs=prompt,
outputs=output,
fn=generate_response,
cache_examples=True
)
# Footer
gr.Markdown(
"""
---
Made with β€οΈ using Phi-2 and QLoRA
""",
elem_classes="footer"
)
# Event handlers
submit_btn.click(
fn=generate_response,
inputs=[prompt, max_length, temperature, top_p, top_k],
outputs=output
)
clear_btn.click(
fn=clear_all,
inputs=[],
outputs=[prompt, output, max_length, temperature, top_p, top_k]
)
if __name__ == "__main__":
iface.launch(
share=True, # Enable sharing
server_name="0.0.0.0", # Allow external access
server_port=7860, # Default Gradio port
show_error=True # Show detailed error messages
) |