Spaces:
Sleeping
Sleeping
File size: 6,505 Bytes
bfe5d0e 2eb6820 bfe5d0e 2eb6820 bfe5d0e 2eb6820 bfe5d0e 14f2b83 bfe5d0e 2eb6820 bfe5d0e 2eb6820 bfe5d0e 2eb6820 bfe5d0e 2eb6820 bfe5d0e 2eb6820 bfe5d0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import random
import time
import os
# Load the model and tokenizer
model_path = "./phi2-qlora-final"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="cpu", # Force CPU usage
torch_dtype=torch.float32, # Use float32 for CPU
trust_remote_code=True
)
# Custom CSS for better styling
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.container {
max-width: 800px;
margin: auto;
padding: 20px;
}
.title {
text-align: center;
color: #2c3e50;
margin-bottom: 20px;
}
.description {
text-align: center;
color: #7f8c8d;
margin-bottom: 30px;
}
.loading {
display: flex;
justify-content: center;
align-items: center;
height: 100px;
}
.error {
color: #e74c3c;
padding: 10px;
border-radius: 5px;
background-color: #fde8e8;
margin: 10px 0;
}
"""
def generate_response(prompt, max_length=512, temperature=0.7, top_p=0.9, top_k=50):
"""Generate response with progress indicator"""
try:
if not prompt.strip():
return "Please enter a prompt."
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad(): # Disable gradient computation for inference
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_p=top_p,
top_k=top_k,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except Exception as e:
return f"Error generating response: {str(e)}"
def clear_all():
"""Clear all inputs and outputs"""
return "", "", 512, 0.7, 0.9, 50
# Example prompts
example_prompts = [
"What is the capital of France?",
"Explain quantum computing in simple terms.",
"Write a short story about a robot learning to paint.",
"What are the benefits of meditation?",
"How does photosynthesis work?",
]
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
gr.Markdown(
"""
# π€ Phi-2 QLoRA Chat Interface (CPU Version)
Chat with the fine-tuned Phi-2 model using QLoRA. This version runs on CPU for better compatibility.
""",
elem_classes="title"
)
gr.Markdown(
"""
This interface allows you to interact with a fine-tuned Phi-2 model. Note that responses may be slower due to CPU-only inference.
""",
elem_classes="description"
)
with gr.Row():
with gr.Column(scale=2):
# Input section
with gr.Group():
gr.Markdown("### π Input")
prompt = gr.Textbox(
label="Enter your prompt:",
placeholder="Type your message here...",
lines=3,
show_label=True,
container=True
)
with gr.Row():
max_length = gr.Slider(
minimum=64,
maximum=512, # Reduced max length for CPU
value=256, # Reduced default length
step=64,
label="Max Length",
info="Maximum length of generated response"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher values make output more random"
)
with gr.Row():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="Top P",
info="Nucleus sampling parameter"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top K",
info="Top-k sampling parameter"
)
# Buttons
with gr.Row():
submit_btn = gr.Button("Generate Response", variant="primary")
clear_btn = gr.Button("Clear All", variant="secondary")
with gr.Column(scale=2):
# Output section
with gr.Group():
gr.Markdown("### π€ Response")
output = gr.Textbox(
label="Model Response:",
lines=5,
show_label=True,
container=True
)
# Examples section
with gr.Group():
gr.Markdown("### π Example Prompts")
gr.Examples(
examples=example_prompts,
inputs=prompt,
outputs=output,
fn=generate_response,
cache_examples=True
)
# Footer
gr.Markdown(
"""
---
Made with β€οΈ using Phi-2 and QLoRA (CPU Version)
""",
elem_classes="footer"
)
# Event handlers
submit_btn.click(
fn=generate_response,
inputs=[prompt, max_length, temperature, top_p, top_k],
outputs=output
)
clear_btn.click(
fn=clear_all,
inputs=[],
outputs=[prompt, output, max_length, temperature, top_p, top_k]
)
if __name__ == "__main__":
iface.launch(
share=True, # Enable sharing
server_name="0.0.0.0", # Allow external access
server_port=7860, # Default Gradio port
show_error=True # Show detailed error messages
) |