Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
PEFT utilities: Utilities related to peft library | |
""" | |
from .import_utils import is_torch_available | |
if is_torch_available(): | |
import torch | |
def recurse_remove_peft_layers(model): | |
r""" | |
Recursively replace all instances of `LoraLayer` with corresponding new layers in `model`. | |
""" | |
from peft.tuners.lora import LoraLayer | |
for name, module in model.named_children(): | |
if len(list(module.children())) > 0: | |
## compound module, go inside it | |
recurse_remove_peft_layers(module) | |
module_replaced = False | |
if isinstance(module, LoraLayer) and isinstance(module, torch.nn.Linear): | |
new_module = torch.nn.Linear(module.in_features, module.out_features, bias=module.bias is not None).to( | |
module.weight.device | |
) | |
new_module.weight = module.weight | |
if module.bias is not None: | |
new_module.bias = module.bias | |
module_replaced = True | |
elif isinstance(module, LoraLayer) and isinstance(module, torch.nn.Conv2d): | |
new_module = torch.nn.Conv2d( | |
module.in_channels, | |
module.out_channels, | |
module.kernel_size, | |
module.stride, | |
module.padding, | |
module.dilation, | |
module.groups, | |
module.bias, | |
).to(module.weight.device) | |
new_module.weight = module.weight | |
if module.bias is not None: | |
new_module.bias = module.bias | |
module_replaced = True | |
if module_replaced: | |
setattr(model, name, new_module) | |
del module | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return model | |