File size: 2,384 Bytes
a63d2a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PEFT utilities: Utilities related to peft library
"""
from .import_utils import is_torch_available


if is_torch_available():
    import torch


def recurse_remove_peft_layers(model):
    r"""
    Recursively replace all instances of `LoraLayer` with corresponding new layers in `model`.
    """
    from peft.tuners.lora import LoraLayer

    for name, module in model.named_children():
        if len(list(module.children())) > 0:
            ## compound module, go inside it
            recurse_remove_peft_layers(module)

        module_replaced = False

        if isinstance(module, LoraLayer) and isinstance(module, torch.nn.Linear):
            new_module = torch.nn.Linear(module.in_features, module.out_features, bias=module.bias is not None).to(
                module.weight.device
            )
            new_module.weight = module.weight
            if module.bias is not None:
                new_module.bias = module.bias

            module_replaced = True
        elif isinstance(module, LoraLayer) and isinstance(module, torch.nn.Conv2d):
            new_module = torch.nn.Conv2d(
                module.in_channels,
                module.out_channels,
                module.kernel_size,
                module.stride,
                module.padding,
                module.dilation,
                module.groups,
                module.bias,
            ).to(module.weight.device)

            new_module.weight = module.weight
            if module.bias is not None:
                new_module.bias = module.bias

            module_replaced = True

        if module_replaced:
            setattr(model, name, new_module)
            del module

            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    return model