|
import os |
|
from dotenv import load_dotenv |
|
from pathlib import Path |
|
|
|
|
|
env_path = Path('.') / '.env' |
|
load_dotenv(dotenv_path=env_path) |
|
|
|
|
|
HF_API_KEY = os.getenv('HF_API_KEY', '') |
|
|
|
|
|
LLM_MODEL = os.getenv('LLM_MODEL', 'google/flan-t5-large') |
|
EMBEDDING_MODEL = os.getenv('EMBEDDING_MODEL', 'sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
|
|
VECTOR_DB_PATH = os.getenv('VECTOR_DB_PATH', './data/vector_db') |
|
COLLECTION_NAME = os.getenv('COLLECTION_NAME', 'personal_assistant') |
|
|
|
|
|
DEFAULT_TEMPERATURE = float(os.getenv('DEFAULT_TEMPERATURE', 0.7)) |
|
CHUNK_SIZE = int(os.getenv('CHUNK_SIZE', 1000)) |
|
CHUNK_OVERLAP = int(os.getenv('CHUNK_OVERLAP', 200)) |
|
MAX_TOKENS = int(os.getenv('MAX_TOKENS', 512)) |
|
|
|
|
|
def create_env_example(): |
|
if not os.path.exists('.env.example'): |
|
with open('.env.example', 'w') as f: |
|
f.write("""# API Keys |
|
HF_API_KEY=your_huggingface_api_key_here |
|
|
|
# LLM Configuration |
|
LLM_MODEL=google/flan-t5-large # Free model with good performance |
|
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
# Vector Database |
|
VECTOR_DB_PATH=./data/vector_db |
|
COLLECTION_NAME=personal_assistant |
|
|
|
# Application Settings |
|
DEFAULT_TEMPERATURE=0.7 |
|
CHUNK_SIZE=1000 |
|
CHUNK_OVERLAP=200 |
|
MAX_TOKENS=512 |
|
""") |