37-AN
commited on
Commit
·
a33458e
0
Parent(s):
Initial commit - Personal RAG Assistant with Hugging Face integration
Browse files- .gitattributes +34 -0
- .gitignore +45 -0
- Dockerfile +30 -0
- README.md +95 -0
- app.py +18 -0
- app/config.py +46 -0
- app/core/agent.py +73 -0
- app/core/ingestion.py +102 -0
- app/core/llm.py +60 -0
- app/core/memory.py +76 -0
- app/main.py +117 -0
- app/ui/streamlit_app.py +167 -0
- app/utils/helpers.py +67 -0
- huggingface-space.yml +9 -0
- requirements.txt +15 -0
- run.py +54 -0
- space.py +49 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
env/
|
8 |
+
build/
|
9 |
+
develop-eggs/
|
10 |
+
dist/
|
11 |
+
downloads/
|
12 |
+
eggs/
|
13 |
+
.eggs/
|
14 |
+
lib/
|
15 |
+
lib64/
|
16 |
+
parts/
|
17 |
+
sdist/
|
18 |
+
var/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Virtual Environment
|
24 |
+
venv/
|
25 |
+
ENV/
|
26 |
+
.env
|
27 |
+
|
28 |
+
# Data directories
|
29 |
+
data/
|
30 |
+
|
31 |
+
# IDE files
|
32 |
+
.idea/
|
33 |
+
.vscode/
|
34 |
+
*.swp
|
35 |
+
*.swo
|
36 |
+
|
37 |
+
# Streamlit
|
38 |
+
.streamlit/
|
39 |
+
|
40 |
+
# Logs
|
41 |
+
*.log
|
42 |
+
|
43 |
+
# OS specific
|
44 |
+
.DS_Store
|
45 |
+
Thumbs.db
|
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
# Install required system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
build-essential \
|
8 |
+
git \
|
9 |
+
&& rm -rf /var/lib/apt/lists/*
|
10 |
+
|
11 |
+
# Copy requirements first for better caching
|
12 |
+
COPY requirements.txt .
|
13 |
+
|
14 |
+
# Install Python dependencies
|
15 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
16 |
+
|
17 |
+
# Copy the rest of the application
|
18 |
+
COPY . .
|
19 |
+
|
20 |
+
# Create necessary directories
|
21 |
+
RUN mkdir -p data/documents data/vector_db
|
22 |
+
|
23 |
+
# Set environment variable to avoid TOKENIZERS_PARALLELISM warning
|
24 |
+
ENV TOKENIZERS_PARALLELISM=false
|
25 |
+
|
26 |
+
# Expose the Streamlit port
|
27 |
+
EXPOSE 8501
|
28 |
+
|
29 |
+
# Set the entrypoint command to run the Streamlit app
|
30 |
+
CMD ["streamlit", "run", "app/ui/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Personal AI Assistant with RAG (Hugging Face Edition)
|
2 |
+
|
3 |
+
A powerful personal AI assistant built with LangChain, integrating Retrieval-Augmented Generation (RAG) with a vector database (Qdrant) for improved contextual awareness and memory. This version uses Hugging Face models and can be deployed to Hugging Face Spaces for free hosting.
|
4 |
+
|
5 |
+
[](https://huggingface.co/spaces)
|
6 |
+
[](https://colab.research.google.com)
|
7 |
+
|
8 |
+
## Features
|
9 |
+
|
10 |
+
- Large Language Model integration using Hugging Face's free models
|
11 |
+
- RAG-based memory system with vector database storage
|
12 |
+
- Document ingestion pipeline for various file types
|
13 |
+
- Simple web UI built with Streamlit
|
14 |
+
- Conversation history tracking and retrieval
|
15 |
+
- Free deployment on Hugging Face Spaces
|
16 |
+
|
17 |
+
## Project Structure
|
18 |
+
|
19 |
+
```
|
20 |
+
.
|
21 |
+
├── README.md
|
22 |
+
├── requirements.txt
|
23 |
+
├── .env.example
|
24 |
+
├── app.py # Main entry point for Hugging Face Spaces
|
25 |
+
├── space.py # Hugging Face Spaces SDK integration
|
26 |
+
├── app/
|
27 |
+
│ ├── main.py # FastAPI application entry point
|
28 |
+
│ ├── config.py # Configuration settings
|
29 |
+
│ ├── ui/
|
30 |
+
│ │ └── streamlit_app.py # Streamlit web interface
|
31 |
+
│ ├── core/
|
32 |
+
│ │ ├── llm.py # LLM integration (Hugging Face)
|
33 |
+
│ │ ├── memory.py # RAG and vector store integration
|
34 |
+
│ │ ├── agent.py # Agent orchestration
|
35 |
+
│ │ └── ingestion.py # Document processing pipeline
|
36 |
+
│ └── utils/
|
37 |
+
│ └── helpers.py # Utility functions
|
38 |
+
└── data/
|
39 |
+
├── documents/ # Store for uploaded documents
|
40 |
+
└── vector_db/ # Local vector database storage
|
41 |
+
```
|
42 |
+
|
43 |
+
## Setup
|
44 |
+
|
45 |
+
1. Clone this repository
|
46 |
+
2. Install dependencies:
|
47 |
+
```
|
48 |
+
pip install -r requirements.txt
|
49 |
+
```
|
50 |
+
3. Copy `.env.example` to `.env` and fill in your Hugging Face API keys (optional)
|
51 |
+
4. Start the Streamlit UI:
|
52 |
+
```
|
53 |
+
streamlit run app/ui/streamlit_app.py
|
54 |
+
```
|
55 |
+
|
56 |
+
## Usage
|
57 |
+
|
58 |
+
1. Upload documents through the web interface
|
59 |
+
2. Chat with your assistant, which can now reference your documents
|
60 |
+
3. The assistant will automatically leverage your document knowledge to provide more personalized responses
|
61 |
+
|
62 |
+
## Deployment to Hugging Face Spaces
|
63 |
+
|
64 |
+
This app can be easily deployed to Hugging Face Spaces for free hosting:
|
65 |
+
|
66 |
+
1. Create a Hugging Face account at [huggingface.co](https://huggingface.co)
|
67 |
+
2. Set environment variables:
|
68 |
+
```
|
69 |
+
export HF_USERNAME=your-username
|
70 |
+
export HF_TOKEN=your-huggingface-token
|
71 |
+
export SPACE_NAME=personal-rag-assistant # optional
|
72 |
+
```
|
73 |
+
3. Run the deployment script:
|
74 |
+
```
|
75 |
+
python space.py
|
76 |
+
```
|
77 |
+
4. Visit your deployed app at `https://huggingface.co/spaces/{your-username}/{space-name}`
|
78 |
+
|
79 |
+
Alternatively, you can manually create a new Space on Hugging Face and link it to your GitHub repository.
|
80 |
+
|
81 |
+
## Models Used
|
82 |
+
|
83 |
+
This implementation uses the following free models from Hugging Face:
|
84 |
+
|
85 |
+
- LLM: [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) - A powerful instruction-tuned model
|
86 |
+
- Embeddings: [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - Efficient embedding model
|
87 |
+
|
88 |
+
You can change these in the `.env` file.
|
89 |
+
|
90 |
+
## Extending
|
91 |
+
|
92 |
+
- Add more document loaders in `ingestion.py`
|
93 |
+
- Integrate additional tools in `agent.py`
|
94 |
+
- Customize the UI in `streamlit_app.py`
|
95 |
+
- Switch to a different LLM in `llm.py` and `.env`
|
app.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""
|
3 |
+
Main entry point for Hugging Face Spaces deployment.
|
4 |
+
This file starts the Streamlit UI when deployed to Hugging Face Spaces.
|
5 |
+
"""
|
6 |
+
import subprocess
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
|
10 |
+
# Make sure the app directory is in the path
|
11 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
12 |
+
|
13 |
+
# Create necessary directories
|
14 |
+
os.makedirs('data/documents', exist_ok=True)
|
15 |
+
os.makedirs('data/vector_db', exist_ok=True)
|
16 |
+
|
17 |
+
# Run the Streamlit app
|
18 |
+
subprocess.run(["streamlit", "run", "app/ui/streamlit_app.py"])
|
app/config.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
# Load environment variables
|
6 |
+
env_path = Path('.') / '.env'
|
7 |
+
load_dotenv(dotenv_path=env_path)
|
8 |
+
|
9 |
+
# API Keys
|
10 |
+
HF_API_KEY = os.getenv('HF_API_KEY', '')
|
11 |
+
|
12 |
+
# LLM Configuration
|
13 |
+
LLM_MODEL = os.getenv('LLM_MODEL', 'google/flan-t5-large')
|
14 |
+
EMBEDDING_MODEL = os.getenv('EMBEDDING_MODEL', 'sentence-transformers/all-MiniLM-L6-v2')
|
15 |
+
|
16 |
+
# Vector Database
|
17 |
+
VECTOR_DB_PATH = os.getenv('VECTOR_DB_PATH', './data/vector_db')
|
18 |
+
COLLECTION_NAME = os.getenv('COLLECTION_NAME', 'personal_assistant')
|
19 |
+
|
20 |
+
# Application Settings
|
21 |
+
DEFAULT_TEMPERATURE = float(os.getenv('DEFAULT_TEMPERATURE', 0.7))
|
22 |
+
CHUNK_SIZE = int(os.getenv('CHUNK_SIZE', 1000))
|
23 |
+
CHUNK_OVERLAP = int(os.getenv('CHUNK_OVERLAP', 200))
|
24 |
+
MAX_TOKENS = int(os.getenv('MAX_TOKENS', 512))
|
25 |
+
|
26 |
+
# Create a template .env file if it doesn't exist
|
27 |
+
def create_env_example():
|
28 |
+
if not os.path.exists('.env.example'):
|
29 |
+
with open('.env.example', 'w') as f:
|
30 |
+
f.write("""# API Keys
|
31 |
+
HF_API_KEY=your_huggingface_api_key_here
|
32 |
+
|
33 |
+
# LLM Configuration
|
34 |
+
LLM_MODEL=google/flan-t5-large # Free model with good performance
|
35 |
+
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
36 |
+
|
37 |
+
# Vector Database
|
38 |
+
VECTOR_DB_PATH=./data/vector_db
|
39 |
+
COLLECTION_NAME=personal_assistant
|
40 |
+
|
41 |
+
# Application Settings
|
42 |
+
DEFAULT_TEMPERATURE=0.7
|
43 |
+
CHUNK_SIZE=1000
|
44 |
+
CHUNK_OVERLAP=200
|
45 |
+
MAX_TOKENS=512
|
46 |
+
""")
|
app/core/agent.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
from typing import List, Dict, Any
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
+
|
6 |
+
# Add project root to path for imports
|
7 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
8 |
+
from app.core.memory import MemoryManager
|
9 |
+
from app.core.llm import get_llm
|
10 |
+
|
11 |
+
class AssistantAgent:
|
12 |
+
"""Orchestrates the assistant's functionality, managing RAG and tools."""
|
13 |
+
|
14 |
+
def __init__(self):
|
15 |
+
self.memory_manager = MemoryManager()
|
16 |
+
self.rag_chain = self.memory_manager.create_rag_chain()
|
17 |
+
self.llm = get_llm()
|
18 |
+
|
19 |
+
# Define a system prompt template
|
20 |
+
self.system_template = """You are a personal AI assistant that helps the user with their tasks and questions.
|
21 |
+
You have access to the user's documents and notes through a retrieval system.
|
22 |
+
When answering questions, leverage this knowledge base to provide specific, factual information.
|
23 |
+
If the answer is not in the provided context, acknowledge that and give the best general answer you can.
|
24 |
+
|
25 |
+
Context from the user's documents:
|
26 |
+
{context}
|
27 |
+
|
28 |
+
Chat History:
|
29 |
+
{chat_history}
|
30 |
+
|
31 |
+
User: {question}
|
32 |
+
Assistant:"""
|
33 |
+
|
34 |
+
self.rag_prompt = PromptTemplate(
|
35 |
+
input_variables=["context", "chat_history", "question"],
|
36 |
+
template=self.system_template
|
37 |
+
)
|
38 |
+
|
39 |
+
def query(self, question: str) -> Dict[str, Any]:
|
40 |
+
"""Process a user query and return a response."""
|
41 |
+
# Use the RAG chain to get an answer
|
42 |
+
response = self.rag_chain({"question": question})
|
43 |
+
|
44 |
+
# Extract the answer and source documents
|
45 |
+
answer = response["answer"]
|
46 |
+
source_docs = response["source_documents"] if "source_documents" in response else []
|
47 |
+
|
48 |
+
# Format source documents for display
|
49 |
+
sources = []
|
50 |
+
for doc in source_docs:
|
51 |
+
metadata = doc.metadata
|
52 |
+
sources.append({
|
53 |
+
"content": doc.page_content[:100] + "..." if len(doc.page_content) > 100 else doc.page_content,
|
54 |
+
"source": metadata.get("source", "Unknown"),
|
55 |
+
"file_name": metadata.get("file_name", "Unknown"),
|
56 |
+
"page": metadata.get("page", "N/A") if "page" in metadata else None
|
57 |
+
})
|
58 |
+
|
59 |
+
return {
|
60 |
+
"answer": answer,
|
61 |
+
"sources": sources
|
62 |
+
}
|
63 |
+
|
64 |
+
def add_conversation_to_memory(self, question: str, answer: str):
|
65 |
+
"""Add a conversation exchange to the memory for future context."""
|
66 |
+
# Create metadata for the conversation
|
67 |
+
metadata = {
|
68 |
+
"type": "conversation",
|
69 |
+
"question": question
|
70 |
+
}
|
71 |
+
|
72 |
+
# Add the exchange to the vector store
|
73 |
+
self.memory_manager.add_texts([answer], [metadata])
|
app/core/ingestion.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from typing import List, Dict, Any
|
4 |
+
from langchain.document_loaders import (
|
5 |
+
PyPDFLoader,
|
6 |
+
TextLoader,
|
7 |
+
CSVLoader
|
8 |
+
)
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
|
11 |
+
# Add project root to path for imports
|
12 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
13 |
+
from app.config import CHUNK_SIZE, CHUNK_OVERLAP
|
14 |
+
from app.core.memory import MemoryManager
|
15 |
+
|
16 |
+
class DocumentProcessor:
|
17 |
+
"""Processes documents for ingestion into the vector database."""
|
18 |
+
|
19 |
+
def __init__(self, memory_manager: MemoryManager):
|
20 |
+
self.memory_manager = memory_manager
|
21 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
22 |
+
chunk_size=CHUNK_SIZE,
|
23 |
+
chunk_overlap=CHUNK_OVERLAP
|
24 |
+
)
|
25 |
+
|
26 |
+
def process_file(self, file_path: str) -> List[str]:
|
27 |
+
"""Process a file and return a list of document chunks."""
|
28 |
+
if not os.path.exists(file_path):
|
29 |
+
raise FileNotFoundError(f"File not found: {file_path}")
|
30 |
+
|
31 |
+
# Get the file extension
|
32 |
+
_, extension = os.path.splitext(file_path)
|
33 |
+
extension = extension.lower()
|
34 |
+
|
35 |
+
# Load the file using the appropriate loader
|
36 |
+
if extension == '.pdf':
|
37 |
+
loader = PyPDFLoader(file_path)
|
38 |
+
elif extension == '.txt':
|
39 |
+
loader = TextLoader(file_path)
|
40 |
+
elif extension == '.csv':
|
41 |
+
loader = CSVLoader(file_path)
|
42 |
+
else:
|
43 |
+
raise ValueError(f"Unsupported file type: {extension}")
|
44 |
+
|
45 |
+
# Load and split the documents
|
46 |
+
documents = loader.load()
|
47 |
+
chunks = self.text_splitter.split_documents(documents)
|
48 |
+
|
49 |
+
return chunks
|
50 |
+
|
51 |
+
def ingest_file(self, file_path: str, metadata: Dict[str, Any] = None) -> List[str]:
|
52 |
+
"""Ingest a file into the vector database."""
|
53 |
+
# Process the file
|
54 |
+
chunks = self.process_file(file_path)
|
55 |
+
|
56 |
+
# Add metadata to each chunk
|
57 |
+
if metadata is None:
|
58 |
+
metadata = {}
|
59 |
+
|
60 |
+
# Add file path to metadata
|
61 |
+
base_metadata = {
|
62 |
+
"source": file_path,
|
63 |
+
"file_name": os.path.basename(file_path)
|
64 |
+
}
|
65 |
+
base_metadata.update(metadata)
|
66 |
+
|
67 |
+
# Prepare chunks and metadatas
|
68 |
+
texts = [chunk.page_content for chunk in chunks]
|
69 |
+
metadatas = []
|
70 |
+
|
71 |
+
for i, chunk in enumerate(chunks):
|
72 |
+
chunk_metadata = base_metadata.copy()
|
73 |
+
if hasattr(chunk, 'metadata'):
|
74 |
+
chunk_metadata.update(chunk.metadata)
|
75 |
+
chunk_metadata["chunk_id"] = i
|
76 |
+
metadatas.append(chunk_metadata)
|
77 |
+
|
78 |
+
# Store in vector database
|
79 |
+
ids = self.memory_manager.add_texts(texts, metadatas)
|
80 |
+
|
81 |
+
return ids
|
82 |
+
|
83 |
+
def ingest_text(self, text: str, metadata: Dict[str, Any] = None) -> List[str]:
|
84 |
+
"""Ingest raw text into the vector database."""
|
85 |
+
if metadata is None:
|
86 |
+
metadata = {}
|
87 |
+
|
88 |
+
# Split the text
|
89 |
+
chunks = self.text_splitter.split_text(text)
|
90 |
+
|
91 |
+
# Prepare metadatas
|
92 |
+
metadatas = []
|
93 |
+
for i in range(len(chunks)):
|
94 |
+
chunk_metadata = metadata.copy()
|
95 |
+
chunk_metadata["chunk_id"] = i
|
96 |
+
chunk_metadata["source"] = "direct_input"
|
97 |
+
metadatas.append(chunk_metadata)
|
98 |
+
|
99 |
+
# Store in vector database
|
100 |
+
ids = self.memory_manager.add_texts(chunks, metadatas)
|
101 |
+
|
102 |
+
return ids
|
app/core/llm.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.llms import HuggingFaceHub
|
2 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.chains import LLMChain
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Add project root to path for imports
|
9 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
10 |
+
from app.config import HF_API_KEY, LLM_MODEL, EMBEDDING_MODEL, DEFAULT_TEMPERATURE, MAX_TOKENS
|
11 |
+
|
12 |
+
def get_llm():
|
13 |
+
"""Initialize and return the language model."""
|
14 |
+
if not HF_API_KEY:
|
15 |
+
# Can still work without API key but with rate limits
|
16 |
+
print("Warning: Hugging Face API key not set. Using models without authentication.")
|
17 |
+
|
18 |
+
llm = HuggingFaceHub(
|
19 |
+
huggingfacehub_api_token=HF_API_KEY,
|
20 |
+
repo_id=LLM_MODEL,
|
21 |
+
model_kwargs={
|
22 |
+
"temperature": DEFAULT_TEMPERATURE,
|
23 |
+
"max_length": MAX_TOKENS
|
24 |
+
}
|
25 |
+
)
|
26 |
+
|
27 |
+
return llm
|
28 |
+
|
29 |
+
def get_embeddings():
|
30 |
+
"""Initialize and return the embeddings model."""
|
31 |
+
# SentenceTransformers can be used locally without an API key
|
32 |
+
return HuggingFaceEmbeddings(
|
33 |
+
model_name=EMBEDDING_MODEL
|
34 |
+
)
|
35 |
+
|
36 |
+
def get_chat_model():
|
37 |
+
"""
|
38 |
+
Create a chat-like interface using a regular LLM.
|
39 |
+
This is necessary because many free HF models don't have chat interfaces.
|
40 |
+
"""
|
41 |
+
llm = get_llm()
|
42 |
+
|
43 |
+
# Create a chat-like prompt template
|
44 |
+
chat_template = """
|
45 |
+
Context: {context}
|
46 |
+
|
47 |
+
Chat History:
|
48 |
+
{chat_history}
|
49 |
+
|
50 |
+
User: {question}
|
51 |
+
AI Assistant:
|
52 |
+
"""
|
53 |
+
|
54 |
+
prompt = PromptTemplate(
|
55 |
+
input_variables=["context", "chat_history", "question"],
|
56 |
+
template=chat_template
|
57 |
+
)
|
58 |
+
|
59 |
+
# Create a chain
|
60 |
+
return LLMChain(llm=llm, prompt=prompt)
|
app/core/memory.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from langchain.vectorstores import Qdrant
|
4 |
+
from langchain.chains import ConversationalRetrievalChain
|
5 |
+
from langchain.memory import ConversationBufferMemory
|
6 |
+
from qdrant_client import QdrantClient
|
7 |
+
from qdrant_client.models import Distance, VectorParams
|
8 |
+
|
9 |
+
# Add project root to path for imports
|
10 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
11 |
+
from app.config import VECTOR_DB_PATH, COLLECTION_NAME
|
12 |
+
from app.core.llm import get_llm, get_embeddings, get_chat_model
|
13 |
+
|
14 |
+
class MemoryManager:
|
15 |
+
"""Manages the RAG memory system using a vector database."""
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
self.embeddings = get_embeddings()
|
19 |
+
self.llm = get_llm()
|
20 |
+
self.chat_model = get_chat_model()
|
21 |
+
self.client = self._init_qdrant_client()
|
22 |
+
self.vectorstore = self._init_vector_store()
|
23 |
+
self.memory = ConversationBufferMemory(
|
24 |
+
memory_key="chat_history",
|
25 |
+
return_messages=True
|
26 |
+
)
|
27 |
+
|
28 |
+
def _init_qdrant_client(self):
|
29 |
+
"""Initialize the Qdrant client."""
|
30 |
+
os.makedirs(VECTOR_DB_PATH, exist_ok=True)
|
31 |
+
return QdrantClient(path=VECTOR_DB_PATH)
|
32 |
+
|
33 |
+
def _init_vector_store(self):
|
34 |
+
"""Initialize the vector store."""
|
35 |
+
collections = self.client.get_collections().collections
|
36 |
+
collection_names = [collection.name for collection in collections]
|
37 |
+
|
38 |
+
# Get vector dimension from the embedding model
|
39 |
+
vector_size = len(self.embeddings.embed_query("test"))
|
40 |
+
|
41 |
+
if COLLECTION_NAME not in collection_names:
|
42 |
+
self.client.create_collection(
|
43 |
+
collection_name=COLLECTION_NAME,
|
44 |
+
vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE),
|
45 |
+
)
|
46 |
+
|
47 |
+
return Qdrant(
|
48 |
+
client=self.client,
|
49 |
+
collection_name=COLLECTION_NAME,
|
50 |
+
embeddings=self.embeddings
|
51 |
+
)
|
52 |
+
|
53 |
+
def get_retriever(self):
|
54 |
+
"""Get the retriever for RAG."""
|
55 |
+
return self.vectorstore.as_retriever(
|
56 |
+
search_type="similarity",
|
57 |
+
search_kwargs={"k": 5}
|
58 |
+
)
|
59 |
+
|
60 |
+
def create_rag_chain(self):
|
61 |
+
"""Create a RAG chain for question answering."""
|
62 |
+
# Using the chat model created with the regular LLM
|
63 |
+
return ConversationalRetrievalChain.from_llm(
|
64 |
+
llm=self.llm,
|
65 |
+
retriever=self.get_retriever(),
|
66 |
+
memory=self.memory,
|
67 |
+
return_source_documents=True
|
68 |
+
)
|
69 |
+
|
70 |
+
def add_texts(self, texts, metadatas=None):
|
71 |
+
"""Add texts to the vector store."""
|
72 |
+
return self.vectorstore.add_texts(texts=texts, metadatas=metadatas)
|
73 |
+
|
74 |
+
def similarity_search(self, query, k=5):
|
75 |
+
"""Perform a similarity search."""
|
76 |
+
return self.vectorstore.similarity_search(query, k=k)
|
app/main.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import uvicorn
|
4 |
+
from fastapi import FastAPI, HTTPException, Depends, Request, File, UploadFile
|
5 |
+
from fastapi.responses import JSONResponse
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
from pydantic import BaseModel
|
8 |
+
from typing import List, Dict, Any, Optional
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
# Add project root to path for imports
|
12 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
13 |
+
from app.core.agent import AssistantAgent
|
14 |
+
from app.core.ingestion import DocumentProcessor
|
15 |
+
from app.utils.helpers import get_document_path
|
16 |
+
from app.config import create_env_example
|
17 |
+
|
18 |
+
# Create .env.example file if it doesn't exist
|
19 |
+
create_env_example()
|
20 |
+
|
21 |
+
# Create FastAPI app
|
22 |
+
app = FastAPI(
|
23 |
+
title="Personal AI Assistant API",
|
24 |
+
description="API for a personal AI assistant with RAG capabilities",
|
25 |
+
version="1.0.0"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Add CORS middleware
|
29 |
+
app.add_middleware(
|
30 |
+
CORSMiddleware,
|
31 |
+
allow_origins=["*"],
|
32 |
+
allow_credentials=True,
|
33 |
+
allow_methods=["*"],
|
34 |
+
allow_headers=["*"],
|
35 |
+
)
|
36 |
+
|
37 |
+
# Initialize the agent and document processor
|
38 |
+
agent = AssistantAgent()
|
39 |
+
document_processor = DocumentProcessor(agent.memory_manager)
|
40 |
+
|
41 |
+
# Define request and response models
|
42 |
+
class QueryRequest(BaseModel):
|
43 |
+
query: str
|
44 |
+
|
45 |
+
class QueryResponse(BaseModel):
|
46 |
+
answer: str
|
47 |
+
sources: List[Dict[str, Any]]
|
48 |
+
|
49 |
+
class TextIngestionRequest(BaseModel):
|
50 |
+
text: str
|
51 |
+
metadata: Optional[Dict[str, Any]] = None
|
52 |
+
|
53 |
+
# Define API endpoints
|
54 |
+
@app.get("/")
|
55 |
+
async def root():
|
56 |
+
return {"message": "Welcome to the Personal AI Assistant API"}
|
57 |
+
|
58 |
+
@app.post("/query", response_model=QueryResponse)
|
59 |
+
async def query(request: QueryRequest):
|
60 |
+
"""Query the assistant with a question."""
|
61 |
+
try:
|
62 |
+
response = agent.query(request.query)
|
63 |
+
|
64 |
+
# Add the conversation to memory
|
65 |
+
agent.add_conversation_to_memory(request.query, response["answer"])
|
66 |
+
|
67 |
+
return response
|
68 |
+
except Exception as e:
|
69 |
+
raise HTTPException(status_code=500, detail=str(e))
|
70 |
+
|
71 |
+
@app.post("/ingest/text")
|
72 |
+
async def ingest_text(request: TextIngestionRequest):
|
73 |
+
"""Ingest text into the knowledge base."""
|
74 |
+
try:
|
75 |
+
metadata = request.metadata or {}
|
76 |
+
|
77 |
+
# Add the text to the knowledge base
|
78 |
+
ids = document_processor.ingest_text(request.text, metadata)
|
79 |
+
|
80 |
+
return {"message": "Text ingested successfully", "ids": ids}
|
81 |
+
except Exception as e:
|
82 |
+
raise HTTPException(status_code=500, detail=str(e))
|
83 |
+
|
84 |
+
@app.post("/ingest/file")
|
85 |
+
async def ingest_file(file: UploadFile = File(...)):
|
86 |
+
"""Ingest a file into the knowledge base."""
|
87 |
+
try:
|
88 |
+
# Create a temporary file
|
89 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file.filename.split('.')[-1]}") as tmp:
|
90 |
+
content = await file.read()
|
91 |
+
tmp.write(content)
|
92 |
+
tmp_path = tmp.name
|
93 |
+
|
94 |
+
# Get a path to store the document
|
95 |
+
doc_path = get_document_path(file.filename)
|
96 |
+
|
97 |
+
# Copy the file to the documents directory
|
98 |
+
with open(doc_path, "wb") as f:
|
99 |
+
# Seek to the beginning of the file
|
100 |
+
await file.seek(0)
|
101 |
+
content = await file.read()
|
102 |
+
f.write(content)
|
103 |
+
|
104 |
+
# Ingest the document
|
105 |
+
metadata = {"original_name": file.filename}
|
106 |
+
ids = document_processor.ingest_file(tmp_path, metadata)
|
107 |
+
|
108 |
+
# Clean up the temporary file
|
109 |
+
os.unlink(tmp_path)
|
110 |
+
|
111 |
+
return {"message": f"File {file.filename} ingested successfully", "ids": ids}
|
112 |
+
except Exception as e:
|
113 |
+
raise HTTPException(status_code=500, detail=str(e))
|
114 |
+
|
115 |
+
# Run the application
|
116 |
+
if __name__ == "__main__":
|
117 |
+
uvicorn.run("app.main:app", host="0.0.0.0", port=8000, reload=True)
|
app/ui/streamlit_app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import tempfile
|
5 |
+
from datetime import datetime
|
6 |
+
from typing import List, Dict, Any
|
7 |
+
|
8 |
+
# Add project root to path for imports
|
9 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
10 |
+
from app.core.agent import AssistantAgent
|
11 |
+
from app.core.ingestion import DocumentProcessor
|
12 |
+
from app.utils.helpers import get_document_path, format_sources, save_conversation
|
13 |
+
from app.config import LLM_MODEL, EMBEDDING_MODEL
|
14 |
+
|
15 |
+
# Set page config
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Personal AI Assistant (Hugging Face)",
|
18 |
+
page_icon="🤗",
|
19 |
+
layout="wide"
|
20 |
+
)
|
21 |
+
|
22 |
+
# Initialize session state variables
|
23 |
+
if "messages" not in st.session_state:
|
24 |
+
st.session_state.messages = []
|
25 |
+
|
26 |
+
if "agent" not in st.session_state:
|
27 |
+
st.session_state.agent = AssistantAgent()
|
28 |
+
|
29 |
+
if "document_processor" not in st.session_state:
|
30 |
+
st.session_state.document_processor = DocumentProcessor(st.session_state.agent.memory_manager)
|
31 |
+
|
32 |
+
# App title
|
33 |
+
st.title("🤗 Personal AI Assistant (Hugging Face)")
|
34 |
+
|
35 |
+
# Create a sidebar for uploading documents and settings
|
36 |
+
with st.sidebar:
|
37 |
+
st.header("Upload Documents")
|
38 |
+
uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt", "csv"])
|
39 |
+
|
40 |
+
if uploaded_file is not None:
|
41 |
+
# Create a temporary file
|
42 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp:
|
43 |
+
tmp.write(uploaded_file.getvalue())
|
44 |
+
tmp_path = tmp.name
|
45 |
+
|
46 |
+
if st.button("Process Document"):
|
47 |
+
with st.spinner("Processing document..."):
|
48 |
+
try:
|
49 |
+
# Get a path to store the document
|
50 |
+
doc_path = get_document_path(uploaded_file.name)
|
51 |
+
|
52 |
+
# Copy the file to the documents directory
|
53 |
+
with open(doc_path, "wb") as f:
|
54 |
+
f.write(uploaded_file.getvalue())
|
55 |
+
|
56 |
+
# Ingest the document
|
57 |
+
st.session_state.document_processor.ingest_file(tmp_path, {"original_name": uploaded_file.name})
|
58 |
+
|
59 |
+
# Clean up the temporary file
|
60 |
+
os.unlink(tmp_path)
|
61 |
+
|
62 |
+
st.success(f"Document {uploaded_file.name} processed successfully!")
|
63 |
+
except Exception as e:
|
64 |
+
st.error(f"Error processing document: {str(e)}")
|
65 |
+
|
66 |
+
st.header("Raw Text Input")
|
67 |
+
text_input = st.text_area("Enter text to add to the knowledge base")
|
68 |
+
|
69 |
+
if st.button("Add Text"):
|
70 |
+
if text_input:
|
71 |
+
with st.spinner("Adding text to knowledge base..."):
|
72 |
+
try:
|
73 |
+
# Create metadata
|
74 |
+
metadata = {
|
75 |
+
"type": "manual_input",
|
76 |
+
"timestamp": str(datetime.now())
|
77 |
+
}
|
78 |
+
|
79 |
+
# Ingest the text
|
80 |
+
st.session_state.document_processor.ingest_text(text_input, metadata)
|
81 |
+
|
82 |
+
st.success("Text added to knowledge base successfully!")
|
83 |
+
except Exception as e:
|
84 |
+
st.error(f"Error adding text: {str(e)}")
|
85 |
+
|
86 |
+
# Display model information
|
87 |
+
st.header("Models")
|
88 |
+
st.write(f"**LLM**: [{LLM_MODEL}](https://huggingface.co/{LLM_MODEL})")
|
89 |
+
st.write(f"**Embeddings**: [{EMBEDDING_MODEL}](https://huggingface.co/{EMBEDDING_MODEL})")
|
90 |
+
|
91 |
+
# Add Hugging Face deployment info
|
92 |
+
st.header("Deployment")
|
93 |
+
st.write("This app can be easily deployed to [Hugging Face Spaces](https://huggingface.co/spaces) for free hosting.")
|
94 |
+
|
95 |
+
# Link to Hugging Face
|
96 |
+
st.markdown("""
|
97 |
+
<div style="text-align: center; margin-top: 20px;">
|
98 |
+
<a href="https://huggingface.co" target="_blank">
|
99 |
+
<img src="https://huggingface.co/front/assets/huggingface_logo.svg" width="200" alt="Hugging Face">
|
100 |
+
</a>
|
101 |
+
</div>
|
102 |
+
""", unsafe_allow_html=True)
|
103 |
+
|
104 |
+
# Display chat messages
|
105 |
+
for message in st.session_state.messages:
|
106 |
+
with st.chat_message(message["role"]):
|
107 |
+
st.write(message["content"])
|
108 |
+
|
109 |
+
# Display sources if available
|
110 |
+
if message["role"] == "assistant" and "sources" in message:
|
111 |
+
with st.expander("View Sources"):
|
112 |
+
sources = message["sources"]
|
113 |
+
if sources:
|
114 |
+
for i, source in enumerate(sources, 1):
|
115 |
+
st.write(f"{i}. {source['file_name']}" + (f" (Page {source['page']})" if source.get('page') else ""))
|
116 |
+
st.text(source['content'])
|
117 |
+
else:
|
118 |
+
st.write("No specific sources used.")
|
119 |
+
|
120 |
+
# Chat input
|
121 |
+
if prompt := st.chat_input("Ask a question..."):
|
122 |
+
# Add user message to chat history
|
123 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
124 |
+
|
125 |
+
# Display user message
|
126 |
+
with st.chat_message("user"):
|
127 |
+
st.write(prompt)
|
128 |
+
|
129 |
+
# Generate response
|
130 |
+
with st.chat_message("assistant"):
|
131 |
+
with st.spinner("Thinking..."):
|
132 |
+
response = st.session_state.agent.query(prompt)
|
133 |
+
answer = response["answer"]
|
134 |
+
sources = response["sources"]
|
135 |
+
|
136 |
+
# Display the response
|
137 |
+
st.write(answer)
|
138 |
+
|
139 |
+
# Display sources in an expander
|
140 |
+
with st.expander("View Sources"):
|
141 |
+
if sources:
|
142 |
+
for i, source in enumerate(sources, 1):
|
143 |
+
st.write(f"{i}. {source['file_name']}" + (f" (Page {source['page']})" if source.get('page') else ""))
|
144 |
+
st.text(source['content'])
|
145 |
+
else:
|
146 |
+
st.write("No specific sources used.")
|
147 |
+
|
148 |
+
# Save conversation
|
149 |
+
save_conversation(prompt, answer, sources)
|
150 |
+
|
151 |
+
# Add assistant response to chat history
|
152 |
+
st.session_state.messages.append({
|
153 |
+
"role": "assistant",
|
154 |
+
"content": answer,
|
155 |
+
"sources": sources
|
156 |
+
})
|
157 |
+
|
158 |
+
# Update the agent's memory
|
159 |
+
st.session_state.agent.add_conversation_to_memory(prompt, answer)
|
160 |
+
|
161 |
+
# Add a footer
|
162 |
+
st.markdown("---")
|
163 |
+
st.markdown("Built with LangChain, Hugging Face, and Qdrant")
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
# This is used when running the file directly
|
167 |
+
pass
|
app/utils/helpers.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from datetime import datetime
|
4 |
+
from typing import List, Dict, Any
|
5 |
+
|
6 |
+
def sanitize_filename(filename: str) -> str:
|
7 |
+
"""Sanitize a filename by removing invalid characters."""
|
8 |
+
# Replace invalid characters with underscores
|
9 |
+
invalid_chars = '<>:"/\\|?*'
|
10 |
+
for char in invalid_chars:
|
11 |
+
filename = filename.replace(char, '_')
|
12 |
+
return filename
|
13 |
+
|
14 |
+
def get_document_path(filename: str) -> str:
|
15 |
+
"""Get the path to store a document."""
|
16 |
+
# Get the documents directory
|
17 |
+
docs_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'data', 'documents')
|
18 |
+
|
19 |
+
# Create the directory if it doesn't exist
|
20 |
+
os.makedirs(docs_dir, exist_ok=True)
|
21 |
+
|
22 |
+
# Sanitize the filename
|
23 |
+
filename = sanitize_filename(filename)
|
24 |
+
|
25 |
+
# Add a timestamp to make the filename unique
|
26 |
+
timestamp = datetime.now().strftime('%Y%m%d%H%M%S')
|
27 |
+
base, ext = os.path.splitext(filename)
|
28 |
+
unique_filename = f"{base}_{timestamp}{ext}"
|
29 |
+
|
30 |
+
return os.path.join(docs_dir, unique_filename)
|
31 |
+
|
32 |
+
def format_sources(sources: List[Dict[str, Any]]) -> str:
|
33 |
+
"""Format source documents for display."""
|
34 |
+
if not sources:
|
35 |
+
return "No sources found."
|
36 |
+
|
37 |
+
formatted = []
|
38 |
+
for i, source in enumerate(sources, 1):
|
39 |
+
source_str = f"{i}. {source['file_name']} "
|
40 |
+
if source.get('page'):
|
41 |
+
source_str += f"(Page {source['page']}) "
|
42 |
+
formatted.append(source_str)
|
43 |
+
|
44 |
+
return "\n".join(formatted)
|
45 |
+
|
46 |
+
def save_conversation(question: str, answer: str, sources: List[Dict[str, Any]]) -> str:
|
47 |
+
"""Save a conversation to a file."""
|
48 |
+
# Create a directory for conversations
|
49 |
+
conv_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'data', 'conversations')
|
50 |
+
os.makedirs(conv_dir, exist_ok=True)
|
51 |
+
|
52 |
+
# Create a filename based on the timestamp and first few words of the question
|
53 |
+
timestamp = datetime.now().strftime('%Y%m%d%H%M%S')
|
54 |
+
question_slug = "_".join(question.split()[:5]).lower()
|
55 |
+
question_slug = sanitize_filename(question_slug)
|
56 |
+
filename = f"{timestamp}_{question_slug}.txt"
|
57 |
+
|
58 |
+
# Format the conversation
|
59 |
+
formatted_sources = format_sources(sources)
|
60 |
+
content = f"Question: {question}\n\nAnswer: {answer}\n\nSources:\n{formatted_sources}\n"
|
61 |
+
|
62 |
+
# Save the conversation
|
63 |
+
filepath = os.path.join(conv_dir, filename)
|
64 |
+
with open(filepath, 'w') as f:
|
65 |
+
f.write(content)
|
66 |
+
|
67 |
+
return filepath
|
huggingface-space.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title: Personal AI Assistant with RAG
|
2 |
+
emoji: 🤗
|
3 |
+
colorFrom: indigo
|
4 |
+
colorTo: purple
|
5 |
+
sdk: docker
|
6 |
+
app_port: 8501
|
7 |
+
pinned: true
|
8 |
+
license: mit
|
9 |
+
duplicated_from: huggingface/transformers-examples
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.1.3
|
2 |
+
langchain-community==0.0.16
|
3 |
+
huggingface-hub==0.20.2
|
4 |
+
transformers==4.36.2
|
5 |
+
sentence-transformers==2.2.2
|
6 |
+
numpy==1.26.3
|
7 |
+
qdrant-client==1.7.0
|
8 |
+
fastapi==0.104.1
|
9 |
+
uvicorn==0.24.0
|
10 |
+
python-dotenv==1.0.0
|
11 |
+
pydantic==2.5.2
|
12 |
+
tiktoken==0.5.2
|
13 |
+
pypdf==3.17.1
|
14 |
+
streamlit==1.29.0
|
15 |
+
torch==2.1.2
|
run.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import argparse
|
5 |
+
import subprocess
|
6 |
+
|
7 |
+
def setup_environment():
|
8 |
+
"""Check if the environment is set up correctly."""
|
9 |
+
# Check if .env file exists
|
10 |
+
if not os.path.exists('.env'):
|
11 |
+
if os.path.exists('.env.example'):
|
12 |
+
print("Warning: .env file not found. Creating from .env.example...")
|
13 |
+
with open('.env.example', 'r') as example, open('.env', 'w') as env:
|
14 |
+
env.write(example.read())
|
15 |
+
print("Created .env file. Please edit it with your API keys and settings.")
|
16 |
+
sys.exit(1)
|
17 |
+
else:
|
18 |
+
print("Error: Neither .env nor .env.example file found.")
|
19 |
+
sys.exit(1)
|
20 |
+
|
21 |
+
# Create necessary directories
|
22 |
+
os.makedirs('data/documents', exist_ok=True)
|
23 |
+
os.makedirs('data/vector_db', exist_ok=True)
|
24 |
+
|
25 |
+
def run_api():
|
26 |
+
"""Run the FastAPI server."""
|
27 |
+
print("Starting API server...")
|
28 |
+
subprocess.run(["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000", "--reload"])
|
29 |
+
|
30 |
+
def run_ui():
|
31 |
+
"""Run the Streamlit UI."""
|
32 |
+
print("Starting Streamlit UI...")
|
33 |
+
subprocess.run(["streamlit", "run", "app/ui/streamlit_app.py"])
|
34 |
+
|
35 |
+
def main():
|
36 |
+
parser = argparse.ArgumentParser(description="Run the Personal AI Assistant")
|
37 |
+
parser.add_argument('--api', action='store_true', help='Run the FastAPI server')
|
38 |
+
parser.add_argument('--ui', action='store_true', help='Run the Streamlit UI')
|
39 |
+
args = parser.parse_args()
|
40 |
+
|
41 |
+
setup_environment()
|
42 |
+
|
43 |
+
if args.api:
|
44 |
+
run_api()
|
45 |
+
elif args.ui:
|
46 |
+
run_ui()
|
47 |
+
else:
|
48 |
+
print("Please specify either --api or --ui")
|
49 |
+
print("Examples:")
|
50 |
+
print(" python run.py --api # Run the API server")
|
51 |
+
print(" python run.py --ui # Run the Streamlit UI")
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
main()
|
space.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""
|
3 |
+
Register this app with Hugging Face Spaces SDK.
|
4 |
+
This file is used for deploying the app to Hugging Face Spaces.
|
5 |
+
"""
|
6 |
+
import os
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
from huggingface_hub import SpaceHardware, SpaceStage, SpaceSDK
|
10 |
+
|
11 |
+
def create_space():
|
12 |
+
"""Create or update a Hugging Face Space."""
|
13 |
+
# Get the Space name or use a default
|
14 |
+
space_name = os.environ.get("SPACE_NAME", "personal-rag-assistant")
|
15 |
+
owner = os.environ.get("HF_USERNAME")
|
16 |
+
|
17 |
+
if not owner:
|
18 |
+
print("Please set the HF_USERNAME environment variable to your Hugging Face username.")
|
19 |
+
sys.exit(1)
|
20 |
+
|
21 |
+
# Initialize the SDK
|
22 |
+
sdk = SpaceSDK(
|
23 |
+
space_id=f"{owner}/{space_name}",
|
24 |
+
token=os.environ.get("HF_TOKEN")
|
25 |
+
)
|
26 |
+
|
27 |
+
# Check if space exists, if not create it
|
28 |
+
try:
|
29 |
+
space_info = sdk.get_space_runtime()
|
30 |
+
print(f"Space {owner}/{space_name} exists.")
|
31 |
+
exists = True
|
32 |
+
except Exception:
|
33 |
+
exists = False
|
34 |
+
|
35 |
+
# Create or update the space
|
36 |
+
if not exists:
|
37 |
+
print(f"Creating new space: {owner}/{space_name}")
|
38 |
+
sdk.create_space(
|
39 |
+
space_hardware=SpaceHardware.CPU_BASIC,
|
40 |
+
space_storage=1,
|
41 |
+
space_sleep_time=3600, # 1 hour of inactivity before sleep
|
42 |
+
space_stage=SpaceStage.RUNNING,
|
43 |
+
)
|
44 |
+
|
45 |
+
print(f"Space URL: https://huggingface.co/spaces/{owner}/{space_name}")
|
46 |
+
return sdk
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
create_space()
|