|
import os |
|
import sys |
|
from typing import List, Dict, Any |
|
from langchain.document_loaders import ( |
|
PyPDFLoader, |
|
TextLoader, |
|
CSVLoader |
|
) |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) |
|
from app.config import CHUNK_SIZE, CHUNK_OVERLAP |
|
from app.core.memory import MemoryManager |
|
|
|
class DocumentProcessor: |
|
"""Processes documents for ingestion into the vector database.""" |
|
|
|
def __init__(self, memory_manager: MemoryManager): |
|
self.memory_manager = memory_manager |
|
self.text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=CHUNK_SIZE, |
|
chunk_overlap=CHUNK_OVERLAP |
|
) |
|
|
|
def process_file(self, file_path: str) -> List[str]: |
|
"""Process a file and return a list of document chunks.""" |
|
if not os.path.exists(file_path): |
|
raise FileNotFoundError(f"File not found: {file_path}") |
|
|
|
|
|
_, extension = os.path.splitext(file_path) |
|
extension = extension.lower() |
|
|
|
|
|
if extension == '.pdf': |
|
loader = PyPDFLoader(file_path) |
|
elif extension == '.txt': |
|
loader = TextLoader(file_path) |
|
elif extension == '.csv': |
|
loader = CSVLoader(file_path) |
|
else: |
|
raise ValueError(f"Unsupported file type: {extension}") |
|
|
|
|
|
documents = loader.load() |
|
chunks = self.text_splitter.split_documents(documents) |
|
|
|
return chunks |
|
|
|
def ingest_file(self, file_path: str, metadata: Dict[str, Any] = None) -> List[str]: |
|
"""Ingest a file into the vector database.""" |
|
|
|
chunks = self.process_file(file_path) |
|
|
|
|
|
if metadata is None: |
|
metadata = {} |
|
|
|
|
|
base_metadata = { |
|
"source": file_path, |
|
"file_name": os.path.basename(file_path) |
|
} |
|
base_metadata.update(metadata) |
|
|
|
|
|
texts = [chunk.page_content for chunk in chunks] |
|
metadatas = [] |
|
|
|
for i, chunk in enumerate(chunks): |
|
chunk_metadata = base_metadata.copy() |
|
if hasattr(chunk, 'metadata'): |
|
chunk_metadata.update(chunk.metadata) |
|
chunk_metadata["chunk_id"] = i |
|
metadatas.append(chunk_metadata) |
|
|
|
|
|
ids = self.memory_manager.add_texts(texts, metadatas) |
|
|
|
return ids |
|
|
|
def ingest_text(self, text: str, metadata: Dict[str, Any] = None) -> List[str]: |
|
"""Ingest raw text into the vector database.""" |
|
if metadata is None: |
|
metadata = {} |
|
|
|
|
|
chunks = self.text_splitter.split_text(text) |
|
|
|
|
|
metadatas = [] |
|
for i in range(len(chunks)): |
|
chunk_metadata = metadata.copy() |
|
chunk_metadata["chunk_id"] = i |
|
chunk_metadata["source"] = "direct_input" |
|
metadatas.append(chunk_metadata) |
|
|
|
|
|
ids = self.memory_manager.add_texts(chunks, metadatas) |
|
|
|
return ids |