2B / app /ui /streamlit_app.py
37-AN
Initial commit - Personal RAG Assistant with Hugging Face integration
a33458e
raw
history blame
6.39 kB
import streamlit as st
import os
import sys
import tempfile
from datetime import datetime
from typing import List, Dict, Any
# Add project root to path for imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from app.core.agent import AssistantAgent
from app.core.ingestion import DocumentProcessor
from app.utils.helpers import get_document_path, format_sources, save_conversation
from app.config import LLM_MODEL, EMBEDDING_MODEL
# Set page config
st.set_page_config(
page_title="Personal AI Assistant (Hugging Face)",
page_icon="🤗",
layout="wide"
)
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = []
if "agent" not in st.session_state:
st.session_state.agent = AssistantAgent()
if "document_processor" not in st.session_state:
st.session_state.document_processor = DocumentProcessor(st.session_state.agent.memory_manager)
# App title
st.title("🤗 Personal AI Assistant (Hugging Face)")
# Create a sidebar for uploading documents and settings
with st.sidebar:
st.header("Upload Documents")
uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt", "csv"])
if uploaded_file is not None:
# Create a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp:
tmp.write(uploaded_file.getvalue())
tmp_path = tmp.name
if st.button("Process Document"):
with st.spinner("Processing document..."):
try:
# Get a path to store the document
doc_path = get_document_path(uploaded_file.name)
# Copy the file to the documents directory
with open(doc_path, "wb") as f:
f.write(uploaded_file.getvalue())
# Ingest the document
st.session_state.document_processor.ingest_file(tmp_path, {"original_name": uploaded_file.name})
# Clean up the temporary file
os.unlink(tmp_path)
st.success(f"Document {uploaded_file.name} processed successfully!")
except Exception as e:
st.error(f"Error processing document: {str(e)}")
st.header("Raw Text Input")
text_input = st.text_area("Enter text to add to the knowledge base")
if st.button("Add Text"):
if text_input:
with st.spinner("Adding text to knowledge base..."):
try:
# Create metadata
metadata = {
"type": "manual_input",
"timestamp": str(datetime.now())
}
# Ingest the text
st.session_state.document_processor.ingest_text(text_input, metadata)
st.success("Text added to knowledge base successfully!")
except Exception as e:
st.error(f"Error adding text: {str(e)}")
# Display model information
st.header("Models")
st.write(f"**LLM**: [{LLM_MODEL}](https://huggingface.co/{LLM_MODEL})")
st.write(f"**Embeddings**: [{EMBEDDING_MODEL}](https://huggingface.co/{EMBEDDING_MODEL})")
# Add Hugging Face deployment info
st.header("Deployment")
st.write("This app can be easily deployed to [Hugging Face Spaces](https://huggingface.co/spaces) for free hosting.")
# Link to Hugging Face
st.markdown("""
<div style="text-align: center; margin-top: 20px;">
<a href="https://huggingface.co" target="_blank">
<img src="https://huggingface.co/front/assets/huggingface_logo.svg" width="200" alt="Hugging Face">
</a>
</div>
""", unsafe_allow_html=True)
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Display sources if available
if message["role"] == "assistant" and "sources" in message:
with st.expander("View Sources"):
sources = message["sources"]
if sources:
for i, source in enumerate(sources, 1):
st.write(f"{i}. {source['file_name']}" + (f" (Page {source['page']})" if source.get('page') else ""))
st.text(source['content'])
else:
st.write("No specific sources used.")
# Chat input
if prompt := st.chat_input("Ask a question..."):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.write(prompt)
# Generate response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = st.session_state.agent.query(prompt)
answer = response["answer"]
sources = response["sources"]
# Display the response
st.write(answer)
# Display sources in an expander
with st.expander("View Sources"):
if sources:
for i, source in enumerate(sources, 1):
st.write(f"{i}. {source['file_name']}" + (f" (Page {source['page']})" if source.get('page') else ""))
st.text(source['content'])
else:
st.write("No specific sources used.")
# Save conversation
save_conversation(prompt, answer, sources)
# Add assistant response to chat history
st.session_state.messages.append({
"role": "assistant",
"content": answer,
"sources": sources
})
# Update the agent's memory
st.session_state.agent.add_conversation_to_memory(prompt, answer)
# Add a footer
st.markdown("---")
st.markdown("Built with LangChain, Hugging Face, and Qdrant")
if __name__ == "__main__":
# This is used when running the file directly
pass