Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
import spaces | |
import torch | |
from transformers import ( | |
AutoModelForPreTraining, | |
AutoProcessor, | |
AutoConfig, | |
PreTrainedTokenizerFast, | |
) | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import gradio as gr | |
MODEL_NAME = os.environ.get("MODEL_NAME", None) | |
assert MODEL_NAME is not None | |
MODEL_PATH = hf_hub_download(repo_id=MODEL_NAME, filename="model.safetensors") | |
DEVICE = torch.device("cuda") | |
BAD_WORD_KEYWORDS = ["(medium)"] | |
def fix_compiled_state_dict(state_dict: dict): | |
return {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()} | |
def get_bad_words_ids(tokenizer: PreTrainedTokenizerFast): | |
ids = [ | |
[id] | |
for token, id in tokenizer.vocab.items() | |
if any(word in token for word in BAD_WORD_KEYWORDS) | |
] | |
return ids | |
def prepare_models(): | |
config = AutoConfig.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
model = AutoModelForPreTraining.from_config( | |
config, torch_dtype=torch.bfloat16, trust_remote_code=True | |
) | |
model.decoder_model.use_cache = True | |
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
state_dict = load_file(MODEL_PATH) | |
state_dict = {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()} | |
model.load_state_dict(state_dict) | |
model.eval() | |
model = model.to(DEVICE) | |
# model = torch.compile(model) | |
return model, processor | |
def demo(): | |
model, processor = prepare_models() | |
ban_ids = get_bad_words_ids(processor.decoder_tokenizer) | |
def generate_tags( | |
text: str, | |
auto_detect: bool, | |
copyright_tags: str = "", | |
max_new_tokens: int = 128, | |
do_sample: bool = False, | |
temperature: float = 0.1, | |
top_k: int = 10, | |
top_p: float = 0.1, | |
): | |
tag_text = ( | |
"<|bos|>" | |
"<|aspect_ratio:tall|><|rating:general|><|length:long|>" | |
"<|reserved_2|><|reserved_3|><|reserved_4|>" | |
"<|translate:exact|><|input_end|>" | |
"<copyright>" + copyright_tags.strip() | |
) | |
if not auto_detect: | |
tag_text += "</copyright><character></character><general>" | |
inputs = processor( | |
encoder_text=text, decoder_text=tag_text, return_tensors="pt" | |
) | |
start_time = time.time() | |
outputs = model.generate( | |
input_ids=inputs["input_ids"].to(model.device), | |
attention_mask=inputs["attention_mask"].to(model.device), | |
encoder_input_ids=inputs["encoder_input_ids"].to(model.device), | |
encoder_attention_mask=inputs["encoder_attention_mask"].to(model.device), | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
no_repeat_ngram_size=1, | |
eos_token_id=processor.decoder_tokenizer.eos_token_id, | |
pad_token_id=processor.decoder_tokenizer.pad_token_id, | |
bad_words_ids=ban_ids, | |
) | |
elapsed = time.time() - start_time | |
deocded = ", ".join( | |
[ | |
tag | |
for tag in processor.batch_decode(outputs[0], skip_special_tokens=True) | |
if tag.strip() != "" | |
] | |
) | |
return [deocded, f"Time elapsed: {elapsed:.2f} seconds"] | |
# warmup | |
print("warming up...") | |
print(generate_tags("Miku is looking at viewer.", True)) | |
print("done.") | |
with gr.Blocks() as ui: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Text(label="Text", lines=4) | |
auto_detect = gr.Checkbox( | |
label="Auto detect copyright tags.", value=False | |
) | |
copyright_tags = gr.Textbox( | |
label="Copyright tags", | |
placeholder="Enter copyright tags here. e.g.) hatsune miku", | |
) | |
translate_btn = gr.Button(value="Translate") | |
with gr.Accordion(label="Advanced", open=False): | |
max_new_tokens = gr.Number(label="Max new tokens", value=128) | |
do_sample = gr.Checkbox(label="Do sample", value=False) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=1.0, | |
value=0.1, | |
step=0.1, | |
) | |
top_k = gr.Slider( | |
label="Top k", | |
minimum=1, | |
maximum=100, | |
value=10, | |
step=1, | |
) | |
top_p = gr.Slider( | |
label="Top p", | |
minimum=0.1, | |
maximum=1.0, | |
value=0.1, | |
step=0.1, | |
) | |
with gr.Column(): | |
output = gr.Textbox(label="Output", lines=4, interactive=False) | |
time_elapsed = gr.Markdown(value="") | |
gr.Examples( | |
examples=[ | |
["Miku is looking at viewer.", True, ""], | |
[ | |
"Fujita Kotone, Tsukimura Temari, Hanami Saki from Gakuen Idolmaster. They are in the hole, there are some tables and chairs. One's face is shaded, one is crying, and one is π.", | |
True, | |
"", | |
], | |
[ | |
"A single girl wearing red hood is sleeping in the forest. View angle from above. grass field. many colorful flowers. Bright atmosphere.", | |
False, | |
"", | |
], | |
["Arona and Plana are hugging each other.", True, "blue archive"], | |
[ | |
"There are two girls. A vivacious blonde gyaru leans against a classroom desk, her flashy accessories jingling as she gestures animatedly. Across from her stands the prim and proper class representative, her long black hair neatly framing her face as she listens attentively, occasionally adjusting her glasses with a delicate touch.", | |
False, | |
"", | |
], | |
[ | |
"1girl, solo, white and blue medium hair with side braid, dark blue parka with hoodie, looking at somewhere else viewer, cowboy shot", | |
False, | |
"" | |
] | |
], | |
inputs=[text, auto_detect, copyright_tags], | |
) | |
gr.on( | |
triggers=[ | |
# text.change, | |
# auto_detect.change, | |
# copyright_tags.change, | |
translate_btn.click, | |
], | |
fn=generate_tags, | |
inputs=[ | |
text, | |
auto_detect, | |
copyright_tags, | |
max_new_tokens, | |
do_sample, | |
temperature, | |
top_k, | |
top_p, | |
], | |
outputs=[output, time_elapsed], | |
) | |
ui.launch() | |
if __name__ == "__main__": | |
demo() | |