File size: 7,571 Bytes
d457afd
 
ff91c77
d457afd
 
 
 
 
 
99a985f
d457afd
 
 
b53691a
 
 
d457afd
 
 
ff91c77
d457afd
56adc5c
d457afd
99a985f
d457afd
 
 
99a985f
56adc5c
 
99a985f
 
 
56adc5c
 
d457afd
99a985f
d457afd
ff91c77
d457afd
 
 
ff91c77
d457afd
 
 
 
 
 
 
25fff87
ff91c77
d457afd
 
 
 
 
 
56adc5c
d457afd
ff91c77
d457afd
 
 
 
25fff87
d457afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25fff87
 
 
 
d457afd
 
 
 
 
99a985f
d457afd
 
56adc5c
d457afd
 
 
 
 
 
 
 
 
 
 
 
25fff87
 
 
 
 
d457afd
25fff87
 
 
 
 
 
d457afd
25fff87
ff91c77
 
d457afd
25fff87
 
 
 
 
 
 
 
 
 
 
 
ff91c77
25fff87
ff91c77
 
25fff87
ff91c77
25fff87
 
 
 
 
 
 
 
 
 
 
 
d457afd
 
99a985f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d457afd
 
 
 
25fff87
 
 
d457afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import time
import spaces

import torch
from transformers import (
    AutoModelForPreTraining,
    AutoProcessor,
    AutoConfig,
    PreTrainedTokenizerFast,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import gradio as gr


MODEL_NAME = os.environ.get("MODEL_NAME", None)
assert MODEL_NAME is not None
MODEL_PATH = hf_hub_download(repo_id=MODEL_NAME, filename="model.safetensors")
DEVICE = torch.device("cuda")

BAD_WORD_KEYWORDS = ["(medium)"]


def fix_compiled_state_dict(state_dict: dict):
    return {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}


def get_bad_words_ids(tokenizer: PreTrainedTokenizerFast):
    ids = [
        [id]
        for token, id in tokenizer.vocab.items()
        if any(word in token for word in BAD_WORD_KEYWORDS)
    ]
    return ids


def prepare_models():
    config = AutoConfig.from_pretrained(MODEL_NAME, trust_remote_code=True)
    model = AutoModelForPreTraining.from_config(
        config, torch_dtype=torch.bfloat16, trust_remote_code=True
    )
    model.decoder_model.use_cache = True
    processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)

    state_dict = load_file(MODEL_PATH)
    state_dict = {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}
    model.load_state_dict(state_dict)

    model.eval()
    model = model.to(DEVICE)
    # model = torch.compile(model)

    return model, processor


def demo():
    model, processor = prepare_models()
    ban_ids = get_bad_words_ids(processor.decoder_tokenizer)

    @spaces.GPU(duration=5)
    @torch.inference_mode()
    def generate_tags(
        text: str,
        auto_detect: bool,
        copyright_tags: str = "",
        max_new_tokens: int = 128,
        do_sample: bool = False,
        temperature: float = 0.1,
        top_k: int = 10,
        top_p: float = 0.1,
    ):
        tag_text = (
            "<|bos|>"
            "<|aspect_ratio:tall|><|rating:general|><|length:long|>"
            "<|reserved_2|><|reserved_3|><|reserved_4|>"
            "<|translate:exact|><|input_end|>"
            "<copyright>" + copyright_tags.strip()
        )
        if not auto_detect:
            tag_text += "</copyright><character></character><general>"
        inputs = processor(
            encoder_text=text, decoder_text=tag_text, return_tensors="pt"
        )

        start_time = time.time()
        outputs = model.generate(
            input_ids=inputs["input_ids"].to(model.device),
            attention_mask=inputs["attention_mask"].to(model.device),
            encoder_input_ids=inputs["encoder_input_ids"].to(model.device),
            encoder_attention_mask=inputs["encoder_attention_mask"].to(model.device),
            max_new_tokens=max_new_tokens,
            do_sample=do_sample,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            no_repeat_ngram_size=1,
            eos_token_id=processor.decoder_tokenizer.eos_token_id,
            pad_token_id=processor.decoder_tokenizer.pad_token_id,
            bad_words_ids=ban_ids,
        )
        elapsed = time.time() - start_time

        deocded = ", ".join(
            [
                tag
                for tag in processor.batch_decode(outputs[0], skip_special_tokens=True)
                if tag.strip() != ""
            ]
        )
        return [deocded, f"Time elapsed: {elapsed:.2f} seconds"]

    # warmup
    print("warming up...")
    print(generate_tags("Miku is looking at viewer.", True))
    print("done.")

    with gr.Blocks() as ui:
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    text = gr.Text(label="Text", lines=4)
                    auto_detect = gr.Checkbox(
                        label="Auto detect copyright tags.", value=False
                    )
                    copyright_tags = gr.Textbox(
                        label="Copyright tags",
                        placeholder="Enter copyright tags here. e.g.) hatsune miku",
                    )
                    translate_btn = gr.Button(value="Translate")

                    with gr.Accordion(label="Advanced", open=False):
                        max_new_tokens = gr.Number(label="Max new tokens", value=128)
                        do_sample = gr.Checkbox(label="Do sample", value=False)
                        temperature = gr.Slider(
                            label="Temperature",
                            minimum=0.1,
                            maximum=1.0,
                            value=0.1,
                            step=0.1,
                        )
                        top_k = gr.Slider(
                            label="Top k",
                            minimum=1,
                            maximum=100,
                            value=10,
                            step=1,
                        )
                        top_p = gr.Slider(
                            label="Top p",
                            minimum=0.1,
                            maximum=1.0,
                            value=0.1,
                            step=0.1,
                        )

                with gr.Column():
                    output = gr.Textbox(label="Output", lines=4, interactive=False)
                    time_elapsed = gr.Markdown(value="")

            gr.Examples(
                examples=[
                    ["Miku is looking at viewer.", True, ""],
                    [
                        "Fujita Kotone, Tsukimura Temari, Hanami Saki from Gakuen Idolmaster. They are in the hole, there are some tables and chairs. One's face is shaded, one is crying, and one is 😊.",
                        True,
                        "",
                    ],
                    [
                        "A single girl wearing red hood is sleeping in the forest. View angle from above. grass field. many colorful flowers. Bright atmosphere.",
                        False,
                        "",
                    ],
                    ["Arona and Plana are hugging each other.", True, "blue archive"],
                    [
                        "There are two girls. A vivacious blonde gyaru leans against a classroom desk, her flashy accessories jingling as she gestures animatedly. Across from her stands the prim and proper class representative, her long black hair neatly framing her face as she listens attentively, occasionally adjusting her glasses with a delicate touch.",
                        False,
                        "",
                    ],
                    [
                        "1girl, solo, white and blue medium hair with side braid, dark blue parka with hoodie, looking at somewhere else viewer, cowboy shot",
                        False,
                        ""
                    ]
                ],
                inputs=[text, auto_detect, copyright_tags],
            )

        gr.on(
            triggers=[
                # text.change,
                # auto_detect.change,
                # copyright_tags.change,
                translate_btn.click,
            ],
            fn=generate_tags,
            inputs=[
                text,
                auto_detect,
                copyright_tags,
                max_new_tokens,
                do_sample,
                temperature,
                top_k,
                top_p,
            ],
            outputs=[output, time_elapsed],
        )

    ui.launch()


if __name__ == "__main__":
    demo()