Spaces:
Running
on
Zero
Running
on
Zero
wip
Browse files- README.md +2 -2
- app.py +162 -4
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
+
title: Natural Language Text To Tag Test
|
3 |
+
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,7 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import (
|
7 |
+
AutoModelForPreTraining,
|
8 |
+
AutoProcessor,
|
9 |
+
AutoConfig,
|
10 |
+
)
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
from safetensors.torch import load_file
|
13 |
import gradio as gr
|
14 |
|
|
|
|
|
15 |
|
16 |
+
MODEL_NAME = os.environ.get("MODEL_NAME", None)
|
17 |
+
assert MODEL_NAME is not None
|
18 |
+
MODEL_PATH = hf_hub_download(repo_id=MODEL_NAME, filename="model.safetensors")
|
19 |
+
|
20 |
+
|
21 |
+
def fix_compiled_state_dict(state_dict: dict):
|
22 |
+
return {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}
|
23 |
+
|
24 |
+
|
25 |
+
def prepare_models():
|
26 |
+
config = AutoConfig.from_pretrained(
|
27 |
+
MODEL_NAME, use_cache=True, trust_remote_code=True
|
28 |
+
)
|
29 |
+
model = AutoModelForPreTraining.from_config(
|
30 |
+
config, torch_dtype=torch.bfloat16, trust_remote_code=True
|
31 |
+
)
|
32 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
33 |
+
|
34 |
+
state_dict = load_file(MODEL_PATH)
|
35 |
+
state_dict = {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}
|
36 |
+
model.load_state_dict(state_dict)
|
37 |
+
|
38 |
+
model.eval()
|
39 |
+
model = torch.compile(model)
|
40 |
+
|
41 |
+
return model, processor
|
42 |
+
|
43 |
+
|
44 |
+
def demo():
|
45 |
+
model, processor = prepare_models()
|
46 |
+
|
47 |
+
@torch.inference_mode()
|
48 |
+
def generate_tags(
|
49 |
+
text: str,
|
50 |
+
auto_detect: bool,
|
51 |
+
copyright_tags: str,
|
52 |
+
max_new_tokens: int = 128,
|
53 |
+
do_sample: bool = False,
|
54 |
+
temperature: float = 0.1,
|
55 |
+
top_k: int = 10,
|
56 |
+
top_p: float = 0.1,
|
57 |
+
):
|
58 |
+
tag_text = (
|
59 |
+
"<|bos|>"
|
60 |
+
"<|aspect_ratio:tall|><|rating:general|><|length:long|>"
|
61 |
+
"<|reserved_2|><|reserved_3|><|reserved_4|>"
|
62 |
+
"<|translate:exact|><|input_end|>"
|
63 |
+
"<copyright>" + copyright_tags.strip()
|
64 |
+
)
|
65 |
+
if not auto_detect:
|
66 |
+
tag_text += "</copyright><character></character><general>"
|
67 |
+
inputs = processor(
|
68 |
+
encoder_text=text, decoder_text=tag_text, return_tensors="pt"
|
69 |
+
)
|
70 |
+
|
71 |
+
start_time = time.time()
|
72 |
+
outputs = model.generate(
|
73 |
+
input_ids=inputs["input_ids"].to("cuda"),
|
74 |
+
attention_mask=inputs["attention_mask"].to("cuda"),
|
75 |
+
encoder_input_ids=inputs["encoder_input_ids"].to("cuda"),
|
76 |
+
encoder_attention_mask=inputs["encoder_attention_mask"].to("cuda"),
|
77 |
+
max_new_tokens=max_new_tokens,
|
78 |
+
do_sample=do_sample,
|
79 |
+
temperature=temperature,
|
80 |
+
top_k=top_k,
|
81 |
+
top_p=top_p,
|
82 |
+
eos_token_id=processor.decoder_tokenizer.eos_token_id,
|
83 |
+
pad_token_id=processor.decoder_tokenizer.pad_token_id,
|
84 |
+
)
|
85 |
+
elapsed = time.time() - start_time
|
86 |
+
|
87 |
+
deocded = ", ".join(
|
88 |
+
[
|
89 |
+
tag
|
90 |
+
for tag in processor.batch_decode(outputs[0], skip_special_tokens=True)
|
91 |
+
if tag.strip() != ""
|
92 |
+
]
|
93 |
+
)
|
94 |
+
return [deocded, f"Time elapsed: {elapsed:.2f} seconds"]
|
95 |
+
|
96 |
+
with gr.Blocks() as ui:
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column():
|
99 |
+
text = gr.Text(label="Text", lines=4)
|
100 |
+
auto_detect = gr.Checkbox(
|
101 |
+
label="Auto detect copyright tags.", value=False
|
102 |
+
)
|
103 |
+
copyright_tags = gr.Textbox(
|
104 |
+
label="Custom tags",
|
105 |
+
placeholder="Enter custom tags here. e.g.) hatsune miku",
|
106 |
+
)
|
107 |
+
translate_btn = gr.Button(value="Translate")
|
108 |
+
|
109 |
+
with gr.Accordion(label="Advanced", open=False):
|
110 |
+
max_new_tokens = gr.Number(label="Max new tokens", value=128)
|
111 |
+
do_sample = gr.Checkbox(label="Do sample", value=False)
|
112 |
+
temperature = gr.Slider(
|
113 |
+
label="Temperature",
|
114 |
+
minimum=0.1,
|
115 |
+
maximum=1.0,
|
116 |
+
value=0.1,
|
117 |
+
step=0.1,
|
118 |
+
)
|
119 |
+
top_k = gr.Number(
|
120 |
+
label="Top k",
|
121 |
+
value=10,
|
122 |
+
)
|
123 |
+
top_p = gr.Slider(
|
124 |
+
label="Top p",
|
125 |
+
minimum=0.1,
|
126 |
+
maximum=1.0,
|
127 |
+
value=0.1,
|
128 |
+
step=0.1,
|
129 |
+
)
|
130 |
+
|
131 |
+
with gr.Column():
|
132 |
+
output = gr.Textbox(label="Output", lines=4, interactive=False)
|
133 |
+
time_elapsed = gr.Markdown(value="")
|
134 |
+
|
135 |
+
gr.Examples(
|
136 |
+
examples=[["Miku is looking at viewer.", True]],
|
137 |
+
inputs=[text, auto_detect],
|
138 |
+
)
|
139 |
+
|
140 |
+
gr.on(
|
141 |
+
triggers=[
|
142 |
+
text.change,
|
143 |
+
auto_detect.change,
|
144 |
+
copyright_tags.change,
|
145 |
+
translate_btn.click,
|
146 |
+
],
|
147 |
+
fn=generate_tags,
|
148 |
+
inputs=[
|
149 |
+
text,
|
150 |
+
auto_detect,
|
151 |
+
copyright_tags,
|
152 |
+
max_new_tokens,
|
153 |
+
do_sample,
|
154 |
+
temperature,
|
155 |
+
top_k,
|
156 |
+
top_p,
|
157 |
+
],
|
158 |
+
outputs=[output, time_elapsed],
|
159 |
+
)
|
160 |
+
|
161 |
+
ui.launch()
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
demo()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
safetensors
|
5 |
+
huggingface_hub
|